# 論文 あと施工せん断補強に用いる PC 鋼棒を太くした場合の補強効果

田中 浩一<sup>\*1</sup>·江尻 譲嗣<sup>\*2</sup>

要旨:地下カルバートのような壁状の RC 構造物を面外方向にせん断補強するには,壁を削孔してあと施工 でせん断補強筋を配置する方法がある。省力化するためには削孔1箇所あたりのせん断負担を増加させるこ とが必要である。その方法の一つはせん断補強筋の高強度化である。著者らは,両端に機械式定着を設けた PC 鋼棒( $\phi$ 13)をせん断補強筋として用いた場合の補強効果を実験で確認してきた。本研究では,より太い PC 鋼棒( $\phi$ 17,  $\phi$ 19)を用いた場合について,せん断実験を行った。その結果,各 PC 鋼棒の直径に応じた 低減係数を用いることにより,そのせん断補強効果を評価できることがわかった。 **キーワード**:せん断,耐震補強,機械式定着,高強度帯鉄筋,PC 鋼棒

### 1. はじめに

古い設計基準で建設された地下カルバートの壁は,許 容できるコンクリートのせん断負担が高かったため,せ ん断補強筋がない場合がある。希に隅角部近傍の常時土 圧による作用せん断力が高い部分においては,折り曲げ 鉄筋でせん断力に抵抗している場合もある。しかしなが ら,折り曲げ鉄筋は一方向に対してせん断抵抗するもの の,逆側に対してはせん断補強効果がない。したがって, 地震時のような繰返し荷重に対してはせん断破壊する 可能性がある<sup>1)</sup>。

橋梁における耐震一次部材である橋脚の耐震補強の ように橋脚外周を取り囲むようなせん断補強は、このよ うな地下構造物の耐震補強として適用することはでき ない。その理由は、壁を拘束する補強を行うには、その 地下構造物背面の地盤を撤去する必要があるためであ る。それは工費や工期が膨大になるだけでなく、都市部 の地下カルバートであれば地上にビルや道路などがあ り、掘削は事実上不可能と言えるためである。

このような地下構造物の面外せん断補強工法につい て,既往の研究がある。例えば山村らの研究<sup>2)</sup>では,壁 を削孔して,その孔に鉄筋を差し込む方法である。差込 む鉄筋はストレートであるため,通常のスターラップや 帯鉄筋のように主鉄筋を取り囲んでいないためにせん 断補強効果はフック等を有する通常のせん断補強筋を 用いた場合に比べて 60%程度になるとしている。

主鉄筋を取り囲んでいないせん断補強筋のせん断補 強効果に関する既往の研究として,前川らのせん断補強 筋の不完全定着の影響に関する研究<sup>3)</sup>や,岡本らのあと 施工せん断補強筋の研究<sup>4)</sup>がある。岡本らの研究は,鉄 筋の先端に機械式定着を圧着させて,山村らの研究より もあと施工したせん断補強筋の引張負担を高めて補強 効果を改善させている。しかしながら,あと施工せん断 補強筋は主鉄筋を取り囲んでいないため、そのせん断負 担を 100%見込むのではなく、80%程度と見込んで設計 することとなっている。

これらの研究に共通することは、定着が不完全であっ ても、異形鉄筋であればせん断補強効果があることであ る。そしてせん断耐力がトラス理論値よりも小さく、そ の理由は、主鉄筋を取り囲んでいないあと施工せん断補 強筋の不完全さであると言える。

このような壁のせん断補強を省力化するためには削 孔本数の低減が必要である。そのためにはせん断補強筋 の先端部における定着を改善することと,せん断補強筋 自身を高強度化することが必要である。

そこで著者らは、あと施工するせん断補強筋として、 PC 鋼棒に用いる機械式定着は小さいものを直列に複数 個取り付けて支圧面積を大きくする方法を考えた(図-1参照)。これを用いた場合の定着性状とせん断補強効果 について前回報告<sup>50</sup>した。本研究では、削孔一か所あた りの補強効果をさらに高めるために PC 鋼棒の断面積を 増加させた場合のせん断補強効果を確認する梁のせん 断実験を行い、そのせん断補強効果を定量的に把握して、 せん断耐力評価式を提案する。

#### 2. せん断実験

2.1 パラメーター

パラメーターは PC 鋼棒の直径,機械式定着の有無や せん断補強筋比,削孔内部のプライマー処理の有無であ る(表-1)。

# 2.2 PC 鋼棒と定着体形状

#### (1) 使用する PC 鋼棒

前回の研究<sup>5)</sup>では φ 13 の PC 鋼棒を使用した。そこで 本研究では φ 17, φ 19 を用いることとした。

\*1 大林組本社技術研究所構造技術研究部 博士(工学) (正会員)

\*2 大林組本社技術研究所構造技術研究部 博士(工学) (非会員)

|               |               |                |                | 各スパン          |                      |                       | まん新                  | あと施工せん断補強             |                            |       | グラウト               |             |
|---------------|---------------|----------------|----------------|---------------|----------------------|-----------------------|----------------------|-----------------------|----------------------------|-------|--------------------|-------------|
| 試験体           | 断面幅<br>B (mm) | 断面高さ<br>D (mm) | 有効高さ<br>d (mm) | スパン<br>L (mm) | せん断<br>スパン<br>a (mm) | 等曲げ<br>スパン<br>am (mm) | とりのよう<br>スパン比<br>a/d | せん断<br>補強筋比<br>pw (%) | 挿入した<br>PC鋼棒               | 支圧面積比 | 方向<br>鉛直:↓<br>水平:→ | プライマー<br>処理 |
| D075PW00      | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.00                  | -                          | -     | -                  | -           |
| D075PW16-M12P | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.16                  | 2−φ17<br>@280              | 12.0  | Ļ                  | 0           |
| D075PW24-M12P | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.24                  | 3− <sub>0</sub> 17<br>@280 | 12.0  | Ļ                  | 0           |
| D075PW24-M12N | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.24                  | 3−φ17<br>@280              | 12.0  | Ļ                  | -           |
| D075PW10-L14P | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.10                  | 1−φ19<br>@280              | 13.8  | Ļ                  | 0           |
| D075PW20-L14P | 1000          | 750            | 667            | 4350          | 1800                 | 750                   | 2.61                 | 0.20                  | 2−φ19<br>@280              | 13.8  | Ļ                  | 0           |
| D100PW16-M12P | 1000          | 1000           | 905            | 5800          | 2450                 | 900                   | 2.61                 | 0.16                  | 2−φ17<br>@280              | 12.0  | Ļ                  | 0           |
| D100PW16-M12N | 1000          | 1000           | 905            | 5800          | 2450                 | 900                   | 2.61                 | 0.16                  | 2−φ17<br>@280              | 12.0  | Ť                  | -           |
| D100PW20-L14P | 1000          | 1000           | 905            | 5800          | 2450                 | 900                   | 2.61                 | 0.20                  | 2−φ19<br>@280              | 13.8  | Ļ                  | 0           |
| D100PW20-L14N | 1000          | 1000           | 905            | 5800          | 2450                 | 900                   | 2.61                 | 0.20                  | 2−¢19<br>@280              | 13.8  | ţ                  | -           |

表-1 試験体一覧

# (2) 支圧面積比

PC 鋼棒に用いた機械式定着を図-1 に示す。村上らの 研究<sup>6)</sup>では,機械式定着具の支圧面積比(機械式定着具 の支圧面積/鉄筋の断面積)は2.0~6.0の範囲であれば, 鉄筋(SD345)の降伏荷重程度で引き抜いても定着部の 破壊性状に変化がないと報告されている。一方,PC 鋼棒 を用いた前回の研究<sup>5)</sup>では,PC 鋼棒 φ 13 に用いる機械 式定着具の支圧面積比<sup>5)</sup>(機械式定着具の総支圧面積/ PC 鋼棒の断面積)は,拘束が十分期待できるコンクリー ト中への定着性状は,村上らの研究で得た知見と同様に 支圧面積比は5程度で十分であった。しかしながら,せ ん断補強をする観点では10以上が必要であることが分 かった。これはせん断補強するせん断スパンにおけるコ ンクリートは圧縮と引張を受けるので,引張応力が作用 しないコンクリート中での定着強度が発揮できないた め生じた差異と考えられる。

そこで、本研究で使用する φ17、 φ19 に対して支圧面 積比が 10 以上となるような機械式定着をそれぞれ与え た。その詳細を図-1 に示す。 φ17、 φ19 に使用した機 械式定着の外径はいずれも 45mm、支圧面積比はそれぞ れ 12.0 (6.0×2 個)、 13.8 (4.6×3 個) とした。機械式定 着を離した距離はいずれも 60mm とした。

## 2.2 試験体の製作

# (1) 削孔方法

梁試験体の形状寸法を図-2 に示す。補強を模擬する ため,梁試験体を製作した後,削孔径 53mm のコアドリ ルにより行った。

左側のせん断スパンでは上から削孔し,右側のせん断 スパンでは下からコアドリルで削孔した。削孔先端の処 理は専用のコアビットにより行った。削孔深さは主鉄筋 と8mm離れた位置に機械式定着が来るように管理した。 すなわち削孔は貫通していない。それは、実際の施工で は、削孔奥行き方向の主鉄筋を傷つけないことや地下水 の漏水を防ぐために貫通させないので、これを模擬した。

## (2) モルタルの充てん方法

用いたモルタルは結合材と細骨材の重量比が 1.0:1.0 のプレミックスタイプの無収縮モルタルである。

下向きにグラウトした場合には、水材料比で20%とし、 J14ロート値で8秒程度にして使用した。横向きにグラ ウトした場合には、水材料比を17%とし、簡易フロー試 験値で70mm 値程度の硬練りにして使用した。硬練りと した理由は、削孔へグラウトした後にモルタルが流れ出 さないようにするためである。

モルタルを充てんする前に,削孔内部を目粗せずにプ ライマー処理を行ったものと,削孔内部をワイヤーブラ シにより目粗して入念にグラウトした場合の2種類とし た。プライマー処理にはアクリル系の材料を使用した。

従来から打継部の旧コンクリート側には入念な打継 処理が必要であることが知られている。近年の打継用材 料がこの種のせん断補強に適しているか,すなわち充分 吸水された湿式コア削孔した後の打継界面に有効かも 確認するためである。









# (3) 形状寸法と配筋

いずれの試験体も断面の幅は 1000mm とした。一方, 断面高さは 750mm, 1000mm の 2 種類とした。前述のよ うに削孔深さを主鉄筋より手前としたため,通常のせん 断補強筋のようにコンクリートストラット着地点であ る主鉄筋を取り囲んでいない。この不完全な配筋がせん 断耐力へ影響を及ぼすと予想される。しかし,断面高さ が大きくなると,図-3 に示すように機械式定着の位置が 中立軸より上方の圧縮領域となる本数が多くなり,せん 断補強効果が大きくなるという仮説を考え,前回の実験 結果でもその傾向が認められたためである。

主鉄筋はせん断破壊が先行するように異形 PC 鋼棒 (SBPD1080/1230)を用いた。また壁状構造物を模擬す るため配力筋(D16:SD345)の端部には機械式定着を 設けた。いずれの試験体も削孔内部にグラウトを行った

| 材料                                              |           | コンクリー                        | ŀ                             | モ<br>せん賭<br>(せん困 | ルタル<br>所スパン左<br>所スパン右)       |  |  |  |
|-------------------------------------------------|-----------|------------------------------|-------------------------------|------------------|------------------------------|--|--|--|
| 試験体                                             | 材令<br>(日) | 圧縮強度<br>(N/mm <sup>2</sup> ) | 弾性係数<br>(kN/mm <sup>2</sup> ) | 材令<br>(日)        | 圧縮強度<br>(N/mm <sup>2</sup> ) |  |  |  |
| D075PW00                                        | 28        | 32.4                         | 23.2                          | -<br>(-)         | -                            |  |  |  |
| D075PW16-M12P                                   | 54        | 26.9                         | -                             | 32<br>(25)       | 86.6<br>(79.1)               |  |  |  |
| D075PW24-M12P                                   | 21        | 32.2                         | -                             | 15<br>(8)        | 80.7*<br>(73.3)*             |  |  |  |
| D075PW24-M12N                                   | 39        | 37.9 26.6                    |                               | 16               | 95.7                         |  |  |  |
| D075PW10-L14P                                   | 20        | 30.9                         | 27.0                          | 14<br>(8)        | 80.7<br>(73.3)               |  |  |  |
| D075PW20-L14P                                   | 55        | 27.8                         | -                             | 13<br>(7)        | 80.7*<br>(73.3)*             |  |  |  |
| D100PW16-M12P                                   | 46        | 26.3                         | 23.2                          | 24<br>(17)       | 85.0<br>(77.0)               |  |  |  |
| D100PW16-M12N                                   | 41        | 36.9                         | -                             | 25<br>(15)       | 89.5<br>(80.9)               |  |  |  |
| D100PW20-L14P                                   | 49        | 27.1                         | -                             | 25<br>(18)       | 85.0**<br>(77.0)**           |  |  |  |
| D100PW20-L14N                                   | 42 36.0   |                              | -                             | 28<br>(18)       | 89.4<br>(80.8)               |  |  |  |
| *:D075PW10-L14Pより推定した値。**:D100PW20-L14Pより推定した値。 |           |                              |                               |                  |                              |  |  |  |

| 衣一4 鋼材の材料試験結果 | -4 錚 | 材の材料詞 | 式験結果 |
|---------------|------|-------|------|
|---------------|------|-------|------|

| 材料                                      | 降伏強度<br>(N/mm <sup>2</sup> ) | 引張強度<br>(N/mm <sup>2</sup> ) | 弾性係数<br>(kN/mm <sup>2</sup> ) |
|-----------------------------------------|------------------------------|------------------------------|-------------------------------|
| 主鉄筋:D32<br>(SBPD1080/1230)              | 1169                         | 1299                         | 197                           |
| せん断補強筋 : ϕ17<br>(SBPR1080∕1230)         | 1201                         | 1286                         | 205                           |
| せん断補強筋 : <i>ϕ</i> 19<br>(SBPR1080/1230) | 1206                         | 1285                         | 205                           |

|               |               |                |                |                            |                    |                            | -           |                              |                                             |                                       |                                       |                                     |
|---------------|---------------|----------------|----------------|----------------------------|--------------------|----------------------------|-------------|------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|
|               |               |                |                | せん新                        | ++ 4.)断            |                            |             | せん                           | 新耐力                                         | 計算値                                   | [(内訳)                                 | 低減係数                                |
| 試験体           | 断面幅<br>B (mm) | 断面高さ<br>D (mm) | 有効高さ<br>d (mm) | 補強筋比<br>p <sub>w</sub> (%) | とんし<br>スパン比<br>a/d | 挿入した<br>PC鋼棒               | プライマー<br>処理 | (実験値)<br>V <sub>u</sub> (kN) | (計算值)<br>V <sub>u</sub> <sup>cal</sup> (kN) | V <sub>c</sub> <sup>cal</sup><br>(kN) | V <sub>s</sub> <sup>cal</sup><br>(kN) | $\frac{V_u - V_c^{cal}}{V_s^{cal}}$ |
| D075PW00      | 1000          | 750            | 667            | 0.00                       | 2.61               | -                          | -           | 561                          | 530                                         | 530                                   | 0                                     | -                                   |
| D075PW16-M12P | 1000          | 750            | 667            | 0.16                       | 2.61               | 2−φ17<br>@280              | 0           | 969                          | 1514                                        | 498                                   | 1016                                  | 0.46                                |
| D075PW24-M12P | 1000          | 750            | 667            | 0.24                       | 2.61               | 3−φ17<br>@280              | 0           | 1057                         | 2052                                        | 529                                   | 1523                                  | 0.35                                |
| D075PW24-M12N | 1000          | 750            | 667            | 0.24                       | 2.61               | 3− <sub>¢</sub> 17<br>@280 | -           | 1343                         | 2081                                        | 558                                   | 1523                                  | 0.52                                |
| D075PW10-L14P | 1000          | 750            | 667            | 0.10                       | 2.61               | 1−φ19<br>@280              | 0           | 745                          | 1156                                        | 522                                   | 634                                   | 0.35                                |
| D075PW20-L14P | 1000          | 750            | 667            | 0.20                       | 2.61               | 2−φ19<br>@280              | 0           | 1050                         | 1772                                        | 504                                   | 1268                                  | 0.43                                |
| D100PW16-M12P | 1000          | 1000           | 905            | 0.16                       | 2.61               | 2−φ17<br>@280              | 0           | 1601                         | 1996                                        | 618                                   | 1378                                  | 0.71                                |
| D100PW16-M12N | 1000          | 1000           | 905            | 0.16                       | 2.61               | 2− <sub>ф</sub> 17<br>@280 | -           | 1749                         | 2070                                        | 692                                   | 1378                                  | 0.77                                |
| D100PW20-L14P | 1000          | 1000           | 905            | 0.20                       | 2.61               | 2−φ19<br>@280              | 0           | 1444                         | 2345                                        | 624                                   | 1721                                  | 0.48                                |
| D100PW20-L14N | 1000          | 1000           | 905            | 0.20                       | 2.61               | 2−φ19<br>@280              | -           | 1908                         | 2407                                        | 686                                   | 1721                                  | 0.71                                |

表-5 実験結果





あとにあと施工せん断補強筋を挿入した。PC 鋼棒の定着 はプレグラウト方式, すなわち予めモルタルを削孔へ注 入した後に PC 鋼棒を挿入して定着した。

### (4) 使用材料

試験体に用いたコンクリートの配合を表-2 に, コン クリートとモルタルの材料試験結果を表-3 に示す。ま た,使用した各種鋼材の材料試験結果を表-4 に示す。



#### 2.3 載荷方法

いずれの載荷もせん断スパン比(a/d)を2.61として2 点集中単調載荷とした(図-2参照)。

#### 3 せん断実験の結果

#### 3.1 せん断耐力

実験で得られたせん断力-変位関係を図-4~6に、せん断耐力を表-5に示す。D075シリーズの結果から、PC 鋼棒を挿入するとせん断耐力は増加し、せん断補強効果 があることがわかる。しかしながら、同一のせん断補強 筋比にもかかわらず、プライマー処理を行ったほうがせ ん断耐力は低い。このことから、プライマー処理は、こ の工法においては使用しないほうが良いと言える。

# 3.2 PC 鋼棒のせん断負担挙動

## (1) PC 鋼棒のひずみ分布

せん断破壊した荷重における PC 鋼棒のひずみ分布の 一例を図-7 に示す。ゲージ位置は図中に示すようにナ ット近傍と補強筋中央である。いずれの場合も PC 鋼棒 の深さ方向でひずみにバラツキがない。このことから内



図-8 PC 鋼棒の応力ブロックとその長さ

側ナット間のPC 鋼棒はアンボンド状態といえる。

φ17 の場合,断面高さが 750mm では PC 鋼棒のひず みは降伏ひずみに達していないが,断面高さが 1000mm では降伏ひずみを超えた。一方,φ19 の場合,断面高さ が 1000mm でも降伏ひずみは超えていなかった。

#### (2) PC 鋼棒の応力ブロック

前述のひずみ分布を定量的に比較するため,図-8 に 示すような破壊した側のせん断スパン中の PC 鋼棒応力 ブロックをもとめ,その総和を材料試験で得た PC 鋼棒 降伏強度で除すと降伏応力を縦軸としたブロックの長 さ(以下,等価応力ブロック長さ)になる。この値を有 効高さで除した値と有効高さとの関係を図-9 に示す。 なお,この値はせん断スパン全長にわたる PC 鋼棒応力 を積分した値が分子となっているので,コンクリートス トラット角度を45度としたトラス理論値における PC鋼 棒のせん断負担とは異なるが,PC 鋼棒のせん断寄与の程 度を異なる有効高さと同列に比較することができる。

PC 鋼棒が φ 17, φ 19 のいずれの場合も,有効高さが 大きくなるとこの値も大きくなる傾向がある。またプラ イマー処理の有無を比較すると,プライマーを用いない ほうが大きい。特にせん断補強筋比が 0.24% と高い場合 ではこの傾向が顕著であった。

このことから、本工法においてプライマー処理を用い るとせん断補強効果が低下し、前述したとおり、せん断 耐力を低くしていると思われる。したがって、削孔内部 の処理は、ワイヤーブラシで入念に目粗した後にグラウ トするほうがモルタルとコンクリートとの一体化が良 いと言える。プライマー処理では、モルタルとコンクリ



図-9 PC 鋼棒の応力ブロックと有効高さの関係



図-10 せん断耐力とせん断補強筋比(D=750mm)

ートとの間に薄いアクリル被膜が形成されるため,旧コ ンクリートの吸水による打継強度低下は防止できるも のの,コアドリルによる削孔面のように凹凸が少ないコ ンクリート表面ではモルタルとコンクリートとの本来 有する打継せん断強度は阻害されているといえる。

#### 3.3 せん断耐力評価式

せん断耐力とせん断補強筋比との関係の一例を図-10に示す。図中にはせん断耐力計算値<sup>77</sup>とせん断補強筋 比との関係も合わせて示す。せん断補強筋比(PC 鋼棒の 量)とせん断耐力は比例関係がある。しかしながら,PC 鋼棒の塑性化を仮定した計算値のような勾配ではない。 また,梁断面高さが大きいほうが PC 鋼棒のせん断負担 が大きい。コンクリートのせん断負担分(Vc)はあと施 工でせん断補強筋を挿入しても変化しないと仮定する と,PC 鋼棒のせん断負担が低下しており,その程度は断 面高さが大きくなると改善することがわかる。

そこで、PC 鋼棒の塑性化を仮定した PC 鋼棒のせん断 負担(Vs)に低減係数( $\alpha \times Vs$ ,  $\alpha$ :低減係数)を用い て実際のせん断負担を表すことができる。

低減係数を次式で算定し,表-5に示した。

$$\alpha = \frac{V_u^{exp} - V_c^{cal}}{V_s^{cal}} \tag{1}$$

# ここに、 $V_u^{exp}$ : せん断耐力の実験値 $V_c^{cal}$ : コンクリートが負担するせん断力の計算値 $V_s^{cal}$ : PC鋼棒が負担するせん断力の計算値 $(\sigma_v=1080N/mm^2$ として計算)

| (φ17の場合)                        |                           |     |
|---------------------------------|---------------------------|-----|
| $\alpha = 0.001 \cdot d - 0.15$ | $(600mm \le d \le 900mm)$ | (2) |
| $\alpha = 0.75$                 | (900mm < d)               | (3) |
| (φ19の場合)                        |                           |     |
| $\alpha = 0.001 \cdot d - 0.20$ | $(600mm \le d \le 900mm)$ | (4) |
| $\alpha = 0.70$                 | (900mm < d)               | (5) |
|                                 |                           |     |

これを用いてあと施工で PC 鋼棒をせん断補強に用いた場合のせん断耐力(Vu)は(4)式で評価できる。

$$V_{\mu} = V_{C}^{\ cal} + \alpha \cdot V_{S}^{\ cal} \tag{6}$$

(2) ~ (6) 式を用いて算定したせん断耐力計算と実 験値との対比を図-12示す。提案した低減係数を用いて 算定したせん断耐力はプライマー処理を行った場合に は危険側の評価となる。したがって、本工法では削孔内 部のプライマー処理をしない前提ならば、この評価式を 使用してよいと考えている。

### 4. まとめ

PC 鋼棒 φ17, φ19 の両端部に複数個の機械式定着を 取り付けたせん断補強筋をあと施工した場合のせん断 補強効果を実験により確認し,以下のことがわかった。

- (1) 今回使用したせん断補強筋をあと施工した場合, せん断耐力は PC 鋼棒の量が増えるほど大きくなるが, PC 鋼棒の塑性化を仮定した設計値には達しない。
- (2) あと施工後のせん断耐力を評価するには、用いた PC 鋼棒 φ 17, φ 19 それぞれに対応する低減係数を PC 鋼棒の塑性化を仮定したせん断負担に乗じ、これと コンクリートのせん断負担との和で評価できる。た だし、プライマーは使用しない場合に限る。



0 500 1,000 1,500 2,000 2,500 3,000 せん断耐力計算値 (kN) 図ー12 せん断耐力の計算値と実験値

#### 参考文献

- 山本賢輔,清宮理:開削トンネル擁壁部のせん断力 に対する鉄筋差込による耐震補強効果,土木学会論 文集, No.777/VI-65, pp.37-51, 2004.12
- 前川宏一ほか: せん断補強筋の定着不良が RC はり のせん断耐力に及ぼす影響, コンクリート工学年次 論文集, Vol.26, No.2, pp.973-978, 2004.7
- 4) 岡本晋ほか:後施工プレート定着型せん断補強鉄筋 を使用した部材の性能確認試験—高強度鉄筋の適 用—,土木学会年次大会,V-489, pp.973-974, 2009.9
- 5) 田中浩一ほか:PC 鋼棒を面外せん断方向にあと施工 したせん断補強効果,コンクリート工学年次論文集, Vol.33, No.2, pp.1039-1044, 2010.7
- 6) 村上雅英ほか:引き抜き試験によるはり主筋の機械 式定着耐力の評価、コンクリート工学論文集,第8
  巻,第2号,pp.1-10,1997.7
- 7) 土木学会:2007年制定コンクリート標準示方書〔設 計編〕, pp.132-135,2008