論文 コンクリートの乾燥収縮に及ぼす栃木県産岩石の特性とその関連性

中根 政範*1·黒井登起雄*2·松村 仁夫*3

要旨:栃木県で採取される硬質砂岩,石灰岩および玄武岩の岩石の特性を明らかにし,それら砕石を用いた コンクリートの乾燥収縮に及ぼす影響について実験的に検証した。その結果、岩石の吸水率は、岩種に関わ らず非常に小さいこと、岩石の圧縮強度、静弾性係数および乾燥収縮ひずみは、岩種によって相違すること、 岩石と同じ種類の砕石を用いたコンクリートの乾燥収縮ひずみは、岩種に関わらず 700×10°程度以下である こと、岩石の弾性係数および乾燥収縮ひずみは、コンクリートの乾燥収縮ひずみに大きく影響し関連性が高 いことを明らかにした。

キーワード:硬化コンクリート,岩石,乾燥収縮,岩石の吸水率,静弾性係数

1. はじめに

栃木県は、関東地域で最も砕石を生産・出荷している 砕石供給県である¹⁾。栃木県の砕石は、北関東を含め、 首都圏の多くのコンクリート製造工場で使用されている。

一方で,骨材を起因とするコンクリートの乾燥収縮に よる構造物のひび割れが問題となり²⁾,骨材の岩種や骨 材自体の品質特性が乾燥収縮ひずみに影響を及ぼすこと などが多方面で指摘されている^{3),4)}。

そこで,本研究では,栃木県で生産・出荷の多い硬質 砂岩を中心に、栃木県産の岩石の特性を明らかにすると ともに、これら砕石を用いたコンクリートの乾燥収縮に 及ぼす影響について実験的に検証した⁵⁾。

2. 栃木県の地質および砕石供給量

栃木県における砕石の採取・製造地域は, 佐野・栃木・ 鹿沼周辺である。砕石製造工場は、図-1に示すように、 それらの地域に28社点在している。その地域の地層は, 主に石灰岩,泥岩,砂岩,チャートや,砂岩と頁岩の互 層,砂岩と泥岩の互層の状態の生物学的堆積岩,玄武岩, および流紋岩の火山性砕屑岩などで構成されている。地 質年代では、中生代・ジュラ紀(約2億万年前~約1億 4600 万年前) にあたる^の。

図-2は、一例として関東地域におけるコンクリート 用砕石の生産量の推移を示す。図-2より、栃木県は、 関東地域の中で最も多くコンクリート用砕石が生産され ており, 平成 23 年の生産量が 580 万 t である。これは関 東地域の生産量(1667.2万t)の35%にあたる。

図-3は、栃木県における砕石全般の原石採取量を示 す。図-3より、栃木県で採取・製造されている砕石の 原石の種類は、砂岩および石灰岩が多い。平成23年の原 石の採取量は、それぞれ 589 万 t および 611 万 t となっ ており、ほぼ同等である。

*1 (有) モトキ建材(足利工業大学総合研究センター客員研究員) *2 足利工業大学 工学部創生工学科 教授 工博 (正会員) *3 足利工業大学 工学部創生工学科 助手 (正会員)

図-2 関東地域におけるコンクリート用砕石の生産 量の推移¹⁾

A CONTRACTOR AND A						
No.	当種	密度	吸水率	単位容積 実積率		EM
	石恒	(g/cm^3)	(%)	質量(kg/l)	(%)	г.IVI.
1	硬質砂岩①	2.66	0.81	1.59	60.3	6.87
2	硬質砂岩2	2.70	0.49	1.63	60.7	6.88
3	硬質砂岩③	2.63	0.66	1.63	62.2	6.88
4	硬質砂岩④	2.62	0.56	1.63	61.9	6.91
5	硬質砂岩⑤	2.64	0.55	1.60	60.8	6.90
6	硬質砂岩⑥	2.68	0.50	1.62	60.6	6.89
7	硬質砂岩⑦	2.65	0.82	1.54	58.4	6.95
8	硬質砂岩⑧	2.66	0.71	1.59	60.0	6.92
9	石灰岩①	2.76	0.77	1.62	59.2	6.91
10	石灰岩②	2.70	0.76	1.61	60.1	6.79
11	玄武岩	2.92	0.53	1.59	54.8	6.95

表-1 使用骨材の種類と物理的性質

※すべて最大寸法 20mm

表-2 コンクリートの配合

No	W/C (%)	s/a	単位量(kg/m ³)					
INO.		(%)	W	С	S	G	Ad	
1		45.2	180	327	790	972	1.000	
2		45.2	174	316	801	1000	0.900	
3		45.2	175	318	799	972	1.000	
4		45.2	162	294	824	1002	0.900	
5		45.2	172	312	805	983	0.062	
6	55	44.2	167	304	795	1027	0.046	
7		46.2	167	304	831	978	0.055	
8		46.2	167	304	813	1001	0.061	
9		45.2	168	305	812	1037	0.900	
10		45.2	167	303	814	1017	0.067	
11		45.2	172	312	805	1088	0.900	

3. 実験計画および実験方法

3.1 実験計画

実験は、力学的特性および乾燥収縮特性を明らかにすることを目的に、次の2つに分けて行った。

- (1) 栃木県産岩石の特性に関する実験
- (2) 栃木県産砕石を用いたコンクリートの特性に関す る実験

3.2 使用材料および配合

岩石試料は,表-1 に示すように,採取地域の異なる 硬質砂岩 8 種類,石灰岩 2 種類および玄武岩 1 種類の計 11 種類とした。

セメントは, 普通ポルトランドセメント (密度 3.16g/cm³), 細骨材は, 川砂(密度2.62g/cm³, 吸水率2.49%, 粗粒率2.68), 混和剤は, AE 減水剤を用いた。粗骨材は, **表-1**に示すように, 岩石試料と同じ11 種類のものを用 いた。コンクリートの配合は, **表-2**に示すように, W/C=55%とし, スランプを10±1cm, 空気量を(5±1)% を目標とした。

3.3 実験方法

(1) 岩石供試体の作製

岩石試料は、11 種類の岩石から φ 30mm×150mm のコ アを採取したものを用いた。コアの抜き取り位置は、図 -4 に示すように、岩石を静置した状態から垂直に抜いた場合(縦方向)と、それを90°回転させてコアを抜いた場合(横方向)とした。これらコア岩石試料は、それぞれ3個採取し、十分に吸水させ、飽水状態にするために、2週間以上水中に浸漬させた。

図-4 岩石試料のコア抜き取り位置の例

(2) 岩石の圧縮強度および静弾性係数試験

岩石の圧縮強度試験は、JIS A 1108 に、静弾性係数試 験は、JIS A 1149 に準じて行った。岩石供試体は、図-5 に示すように、(1)で採取したコア岩石試料を直径と高さ の比が $1:2(\phi 30 \times 60 \text{nm})$ となるように成形したものを 6 個作製し、試験に供した。静弾性係数試験は、岩石供試 体の高さ中央における円周および軸方向へ各 2 枚のひず みゲージを貼り付けて行った。

図-5 岩石の圧縮強度および静弾性係数試験用供試体 の形状寸法とひずみゲージ貼り付け位置

(3) 岩石の乾燥収縮ひずみの測定

岩石の乾燥収縮ひずみの測定は、図-6に示すように、 (1)で作製したコア岩石試料を恒温室(温度 20±2℃,湿度 ((60±5)%RH)に保存し、コンタクトゲージ法(JIS A 1129-2)を用いて 12~24 週まで実施した。なお、基長は、 60mm または 100mm とした。

図-6 岩石の乾燥収縮ひずみ測定用試料の形状寸法

(4) コンクリートの圧縮強度および静弾性係数試験

コンクリートの圧縮強度試験は,JIS A 1108 に,静弾 性係数試験は,JIS A 1149 にそれぞれ従って行った。

(5) コンクリートの乾燥収縮ひずみの測定

コンクリートの乾燥収縮ひずみの測定は,JISA1129-3 (ダイヤルゲージ法)に従って行った。

4 実験結果

4.1 栃木県産岩石の特性

(1) 岩石の密度および吸水率

岩石の密度は、図-7 に示すように、硬質砂岩 2.63~2.73g/cm³、石灰岩 2.71~2.78g/cm³、玄武岩 2.97g/cm³ であって、硬質砂岩、石灰岩、玄武岩の順に大きい値を 示した。また、採取地域よって、0.07~0.1 g/cm³程度のば らつきがあった。

岩石の吸水率は、図-8 に示すように、硬質砂岩 0.07~0.59%,石灰岩 0.19~0.25%,玄武岩 0.58%であって、 若干ばらつきの大きいものも認められるが、岩石の種類 に関わらず 0.6%以下と非常に小さい値であった。

(2) 岩石の圧縮強度および静弾性係数

岩石の圧縮強度および静弾性係数は,表-3 に示す。 表-3 より,硬質砂岩の圧縮強度は,126.6~200N/mm² を超えるものが多数認められた。また,静弾性係数は, 6.30~ 8.23×10^4 N/mm² であって,採取地域によって 0.99~ 1.93×10^4 N/mm²程度のばらつきが認められるが,圧 縮強度と同様に大きな値を示した。なお,石灰岩および 玄武岩は,それぞれ圧縮強度が119~170N/mm²を超える

図-8 栃木県産岩石の吸水率

表-3 栃木県産岩石の圧縮強度および静弾性係数

No.	山廷	圧縮	静弹性係数		
	石悝	最大	最小	平均	$(\times 10^{4} \text{N/mm}^{2})$
1	硬質砂岩①	301.4	146.9	207.8	6.32
2	硬質砂岩②	134.7	113.0	126.6	6.48
3	硬質砂岩③	210.9 ↑	200.3	206.1 ↑	7.08
4	硬質砂岩④	210.1 ↑	199.7	204.4 ↑	8.23
5	硬質砂岩⑤	212.3 ↑	52.5	211.6 ↑	6.43
6	硬質砂岩⑥	212.3 ↑	102.5	188.6 ↑	6.30
7	硬質砂岩⑦	212.3 ↑	209.5 ↑	211.4 ↑	7.00
8	硬質砂岩⑧	210.9 ↑	208.1 ↑	209.5 ↑	6.58
9	石灰岩①	1341	98.7	119.1	7.89
10	石灰岩②	209.5 ↑	93.0	174.2 ↑	6.90
11	玄武岩	139.1	44.1	84.1	8.02

※1 圧縮強度に付記した記号「↑」は、載荷重を 150KN で終了 したもの、若しくはその数値が含まれたもので、強度はそ の値以上を示す

ものおよび 84.1N/mm²,静弾性係数が 6.90~7.89×10⁴N/mm²および 8.02×10⁴N/mm²であった。

このように、本実験で使用した栃木県産の岩石は、密 度および吸水率も良好な値であり、圧縮強度および静弾 性係数も比較的大きな値を示しており、品質の良いもの であると考えられる。

(3) 岩石の乾燥収縮ひずみ

図-9は、岩石から縦方向および横方向にそれぞれ採取した試料で、乾燥期間8週~12週における乾燥収縮ひ

図-9 栃木県産岩石の乾燥収縮ひずみ

ずみを示した。図-9 より,硬質砂岩の乾燥収縮ひずみ は,乾燥期間 12 週で縦方向が 67~218×10⁻⁶,横方向が 95~203×10⁻⁶の範囲であって,硬質砂岩①~⑧の採取地 域やコア岩石試料の抜き取り方向によって大きく異なっ た。乾燥収縮ひずみの差異は,採取地域によって 100× 10⁻⁶ 程度あり,コア岩石試料の抜き取り方向よりも岩石 の採取地域の影響を強く受けているようである。また, 石灰岩の乾燥収縮ひずみは,縦方向が 78~80×10⁻⁶,横 方向が 78~111×10⁻⁶,玄武岩の乾燥収縮ひずみは,縦方 向が 194×10⁻⁶,横方向が 92×10⁻⁶であった。石灰岩は, 硬質砂岩に比べ若干小さく,玄武岩は,縦方向で乾燥収 縮ひずみが大きな値を示したものの,硬質砂岩と同程度 であった。なお,岩石の乾燥収縮ひずみは,乾燥期間 4 週まで大きくなる傾向を示したが,それ以降大きな変化 が認められなくなった。

4.2 栃木県産砕石を用いたコンクリートの特性

(1) コンクリートの圧縮強度および静弾性係数

図-10は、粗骨材として岩石と同じ11種類の砕石を

凶ー10 栃木県産砕石を用いたコンクリートの 圧縮強度および静弾性係数 用いたコンクリートの圧縮強度および静弾性係数の結果 を示す。図-10より、コンクリートの圧縮強度は、硬質 砂岩砕石を用いた場合 36.3~44.8N/mm²、石灰岩砕石を 用いた場合 35.8~38.1N/mm²、玄武岩砕石を用いた場合 34.2N/mm²であった。硬質砂岩砕石②~④を用いた場合 の圧縮強度は、他に比べ若干大きな値を示したが、その 他の砕石を用いた場合は、ほぼ同程度の範囲の値を示し た。また、コンクリートの静弾性係数は、3.06~3.51× 10⁴N/mm²の範囲であって、岩石の種類および採取地域 に関わらず同程度の値を示した。

したがって、本実験で使用した栃木県産の砕石を用い たコンクリートは、岩石の種類や採取地域に関わらず強 度特性の良好なコンクリートが得られた。

(2) コンクリートの乾燥収縮ひずみ

図-11 は、乾燥期間 12,24 および48 週における各種 砕石を用いたコンクリートの乾燥収縮ひずみの結果を示 す。図-11 より、乾燥期間 48 週におけるコンクリート の乾燥収縮ひずみは、硬質砂岩砕石を用いた場合 536~

715×10⁶,石灰岩砕石を用いた場合476~549×10⁶,玄武 岩砕石を用いた場合458×10⁶であった。硬質砂岩砕石を 用いた場合の乾燥収縮ひずみは,採取地域によって若干 差異が認められるものの,いずれの砕石を用いたコンク リートも乾燥収縮ひずみの許容値^{7,8}とされる800~

1000×10⁻⁶以下よりも小さい値となった。なお,乾燥収縮 ひずみは,硬質砂岩①や石灰岩②のように,一部他の同 じ岩種のコンクリートに比べ乾燥収縮ひずみが大きくな っている。この原因は,採取地域の地層によって,硬質 砂岩や石灰岩が頁岩や泥岩との互層の状態で堆積してい る可能性によるものと考えられる。

以上の結果より,11種類の栃木県産の砕石を用いたコンクリートは、力学的特性および乾燥収縮特性ともに良好であると判断できる。

コンクリートの乾燥収縮ひずみと岩石の特性との関 連性およびひずみ予測

5.1 コンクリートの乾燥収縮ひずみと岩石の特性との関 連性

本章では、本実験で使用した栃木県産の11種類の岩石のほかに、別の実験⁹⁰で行った愛媛県産の岩石1種類を加えた計12種類について考察を加えた。

(1) 吸水率の影響

図-12は、栃木県産岩石の吸水率とコンクリートの乾 燥収縮ひずみとの関係を示す。図-12より、栃木県産岩 石の吸水率とコンクリートの乾燥収縮ひずみとの間には、 今回の実験の範囲では関連性が認められなかった。しか し、栃木県産の岩石よりも吸水率の大きい愛媛県産の岩 石を用いた場合、コンクリートの乾燥収縮ひずみも大き くなっているため、さらに吸水率の大きい岩石を用いた 場合の結果を加えて再検証が必要であると考えられる。

(2) 乾燥収縮ひずみの影響

図-13は、栃木県産の岩石の乾燥収縮ひずみ(乾燥期間12週)とコンクリートの乾燥収縮ひずみとの関係を示す。図-13より、コンクリートの乾燥収縮ひずみは、若干ばらつきはあるが、岩石の乾燥収縮ひずみが大きくなると大きくなる傾向を示した。岩石の乾燥収縮ひずみは、300×10⁶を超えると、コンクリートの乾燥収縮ひずみも800×10⁶以上と非常に大きくなる傾向を示している。しかし、栃木県産の岩石の乾燥収縮ひずみは、67~218×10⁶の範囲であって、この範囲であればコンクリートの乾燥収縮ひずみは、700×10⁶程度以下となる可能性が高いことが示された。

(3) 静弾性係数の影響

図-14は、栃木県産の岩石の静弾性係数とコンクリートの乾燥収縮ひずみとの関係を示す。図-14より、コンクリートの乾燥収縮ひずみは、岩石の静弾性係数が小さ

図-14 栃木県産の岩石の静弾性係数とコンクリートの 乾燥収縮ひずみとの関係

いほど大きくなる傾向を示した。岩石の静弾性係数が 5 ×10⁴N/mm²以下の場合, コンクリートの乾燥収縮が 1000 ×10⁻⁶ 以上となっている。栃木県産の岩石の静弾性係数 は, 6.30~8.23×10⁴N/mm²の範囲であって, この範囲で あればコンクリートの乾燥収縮ひずみは,700×10⁶程度 以下となる可能性が高いことが示された。

したがって、既往の文献³と同様に、コンクリートの 乾燥収縮ひずみは、岩石の静弾性係数および岩石の乾燥 収縮ひずみに大きく影響し、高い関連性が認められた。

5.2 コンクリートの乾燥収縮ひずみの予測

本章では,5.1の主に栃木県産の砕石を用いたコンクリートの結果より,岩石の乾燥収縮ひずみおよび岩石の静 弾性係数とコンクリートの乾燥収縮ひずみを変数とした 重回帰分析を行った³⁾。

重回帰式は、次のとおりである。

$$\varepsilon c = -0.365 \varepsilon g - 134.6Eg + 1583$$
 (1)

ここで, εc; コンクリートの乾燥収縮ひずみ(×10⁻⁶) εg; 岩石の乾燥収縮ひずみ(×10⁻⁶)

Eg; 岩石の静弾性係数(×10⁴N/mm²)

図-15は、コンクリートの乾燥収縮ひずみの実測値と 式(1)で求めたコンクリートの乾燥収縮の予測値との関 係を示す。図-15より、コンクリートの乾燥収縮ひずみ の予測値は、実測値と近似する傾向を示した。岩石の静 弾性係数と岩石の乾燥収縮ひずみをあらかじめ求めるこ とで、コンクリートの乾燥収縮ひずみを予測可能である ことが示唆できた。また、これらの予測値を求めること で、コンクリートの乾燥収縮ひずみが許容値以下となる 判断材料として活用できる可能性があると考えられる。

6. まとめ

栃木県で採取される硬質砂岩,石灰岩および玄武岩の 岩石の特性およびそれら砕石を用いたコンクリートの乾 燥収縮特性との関連性を検証した結果,以下の各点を明 らかにすることができた。

- (1)岩石の品質は、圧縮強度および静弾性係数ともに大き く、岩石の種類に関わらず良好である。また、岩石の 乾燥収縮ひずみは、岩石の種類によって差異が認めら れ、石灰岩と玄武岩が同程度であるが、硬質砂岩が採 取地域によって 100×10⁻⁶ 程度大きくなる傾向を示し た。
- (2)各種砕石を用いたコンクリートの乾燥収縮ひずみは, 700×10⁻⁶程度以下であった。栃木県産の砕石を用いた コンクリートは,岩石の種類に関わらず良好な乾燥収 縮特性を示す。
- (3)岩石の静弾性係数および岩石の乾燥収縮ひずみとコンクリートの乾燥収縮ひずみとの間には、関連性が認められた。これらの値から重回帰式を求めることで、コンクリートの乾燥収縮ひずみを予測し評価できる可能性が示された。

謝辞

本研究を実施するに当たっては,砕石の提供に栃木県 砕石工業協同組合に加盟する多くの砕石工場の皆様にご 協力を頂いた。ここに記して謝意を表します。

参考文献

- 経済産業省:砕石動態統計調査,経済産業省ホーム ページ,2011.4
- 例えば、土木学会コンクリート委員会: 垂井高架橋の損傷に関する調査特別委員会最終報告書, 2008.3
- 5) 兵頭彦次,谷村充,杉山真悟,佐藤良一:骨材のヤング係数・乾燥収縮に基づくコンクリートの乾燥収縮評価,コンクリート工学年次論文集,Vol.33, No.1, pp.479-484,2011.7
- 4) 真野孝次,中村則清:砕石の品質がコンクリートの 乾燥収縮に及ぼす影響に関する実験的研究(その 1:原石コアの品質とコンクリートの乾燥収縮との 関係),日本建築学会大会学術講演梗概集(北陸), pp.933-934, 2010.9
- 5) 黒井登起雄,中根政範,松村仁夫:栃木県産の硬質 砂岩砕石コンクリートの乾燥収縮特性,足利工業大 学総合研究センター年報,第13号,pp.107-112,2012
- 6) 産業技術総合研究所地質調査総合センター:20万文の1日本シームレス地質図(DVD版),(社)東京地学協会,2009
- 7) 土木学会:コンクリート標準示方書設計編,2008
- 8) 日本建築学会:建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事,2009
- 9) 小林悠人,斎藤広樹,宮澤伸吾:コンクリートの乾燥収縮に及ぼす骨材種類の影響,(社)日本コンクリート工学協会関東支部栃木地区研究発表会講演概要集,pp.63-66,2010.3