# 論文 コンポジット舗装におけるアスファルト中間層適用に関する研究

竹津 ひとみ\*1・風戸 崇之\*2・西澤 辰男\*3・麓 隆行\*4

要旨:本研究では、セメント安定処理路盤とセメント安定処理路盤の上部4cmをアスファルト中間層に置き 換えた連続鉄筋コンクリート版の挙動の違いを把握するため、舗装構造の一部を想定した模擬供試体を作製 し、10か月間にわたり温度、ひずみおよび傾斜角を測定した。その結果、アスファルト中間層がある方が供 試体端部の拘束ひずみが小さくなること、また傾斜角が大きくなることを確認した。また、供試体端部から 採取したコアから、アスファルト中間層の有無でコンクリート版との境界面に入るひび割れの性状が異なる ことを確認した。

キーワード:連続鉄筋コンクリート舗装版,アスファルト中間層,拘束ひずみ,傾斜角

### 1. はじめに

コンポジット舗装は、コンクリート舗装版の上にアス ファルト表・基層を設ける構造であり、コンクリート舗 装の耐久性と、アスファルト舗装の走行快適性および維 持修繕の容易性を兼ね備えた舗装である。高速道路等の 重交通路線では、連続鉄筋コンクリート(以下、CRC) 舗装版を用いたコンポジット舗装を採用する例<sup>1)</sup>がある。 CRC版は、走行方向に配置した鉄筋の拘束力によってひ び割れを分散させ、目地を不要とすることができるため、 アスファルト表・基層へのリフレクティブクラックの発 生を抑制することができるものである。

それとは別に、重交通路線等ではセメント安定処理路 盤の上部にアスファルト中間層(以下, As 中間層)を設 置することがある<sup>2)</sup>。これは、コンクリート版の下に雨 水等が浸入することによるセメント安定処理路盤の耐久 性低下を防止しようとするものと考えられる。

表・基層や中間層に用いられるアスファルト混合物は, 温度および載荷速度依存性が高い粘弾性体であり,走行 荷重のような瞬間的な載荷には大きな支持力(高い弾性 係数)を発揮する材料である。コンクリート版上下面に より生じる温度応力は,昼夜間の温度変化によるもので あるため,その周期は24時間といえる。このようなゆっ くりとした動きには,As中間層の拘束は小さくなること が考えられる。しかし,そのような効果を検討した研究 はなく,現行の設計でもその効果は考慮されていない<sup>3),4)</sup>。

そこで、本研究ではコンポジット舗装の CRC 版下に セメント安定処理路盤とセメント安定処理路盤の上部 4cmをAs中間層に置き換えた場合の CRC 版の挙動の違 いを把握するために、模擬供試体で10カ月間の計測を行 い、As中間層の有用性や寿命予測に及ぼす影響について 検証した。

#### 2. 試験方法

#### 2.1 模擬供試体作製

実物大の CRC 版は、延長方向に数百 m 以上と長い区間を必要とするため、限られた敷地内では実験が困難であった。そこで、本実験では幅員 4250mm の CRC 版に幅員方向のひび割れが 60cm 間隔に発生したと仮定し、その部分を切り出した形の模擬供試体を作製することとした。作製した模擬供試体の状況を写真-1 に示す。また、平面図を図-1 および断面図を図-2 に示す。

まず,模擬供試体は原地盤を掘削し,真砂土を締固めて 厚さ 700mm の構築路床を設け,その上に各工区を施工 した。As 中間層を設けた工区(以下,ASI工区)は、コ ンクリート版の下に路盤として As 中間層 40mm および セメント安定処理路盤 160mm 設け,比較工区(以下, CTB 工区)は、セメント安定処理路盤 200mm のみの路 盤とした。コンクリート版の寸法は、幅 4250mm×長さ 600mm×厚さ 250mm で,鉄筋を配せず,基本的に路盤 からの拘束が主となるような状況とした。また、日射等 の影響を受けやすくするため、アスファルト表・基層を 設けない構造とした。なお、コンクリート版の側面は、 厚さ 100mm の発泡樹脂断熱材で断熱処理し、コンクリ ート版や路盤との隙間はシーリング材で防水処理をした。



\*1 住友大阪セメント(株)セメント・コンクリート研究所 (正会員) \*2 西日本高速道路(株)技術本部 技術部 \*3 石川工業高等専門学校 環境都市工学科 教授 工博 \*4 近畿大学 理工学部社会環境工学科 講師 博(工) (正会員)



### 2.2 使用材料および配合

各層の使用材料を表-1 に示す。路床は真砂土を使用 し、セメント安定処理路盤は含水比 7.3%の M-30 硬質砂 岩に高炉セメントB種をバックホウにて攪拌し転圧した。 As 中間層は、表-2 に示す骨材配合率の密粒度アスファ ルト混合物を使用した。コンクリートの使用材料を表-3 に、示方配合を表-4 に示す。計測機器類を設置するた め、粗骨材最大寸法 20mm、スランプ 6.5cm の配合とし た。なお、打設時のコンクリートはスランプ 7.5cm、空 気量 5.8%、温度 18.5℃であった。

| 衣一 | 使用した材料 | 模擬供試体に | 表-1 |
|----|--------|--------|-----|
|----|--------|--------|-----|

| 種類     | 使用材料          | 備考         |  |  |  |
|--------|---------------|------------|--|--|--|
| 路床     | 真砂土           | 淡路島産       |  |  |  |
| セメント   | 高炉セメントB種      |            |  |  |  |
| 安定処理路盤 | M-30 硬質砂岩     | 茨木市産       |  |  |  |
| As 中間層 | 密粒度アスファルト混合物  | ストアス 60/80 |  |  |  |
| コンクリート | <b>※表3</b> 参照 |            |  |  |  |
| 断熱材    | 発泡ポリスチレン樹脂    |            |  |  |  |

### 表-2 密粒度アスファルト混合物の骨材配合率

**N. 5 II** 

| 設計アスファ  | 骨材配合率 [%] |       |          |     |    |  |  |
|---------|-----------|-------|----------|-----|----|--|--|
| ルト量 [%] | 6 号砕石     | 7 号砕石 | スクリーニングス | 細目砂 | 石粉 |  |  |
| 5.6     | 35        | 22    | 19       | 19  | 5  |  |  |

した田井宇

| 表一3 コングリード使用材料 |    |                                               |        |  |  |  |
|----------------|----|-----------------------------------------------|--------|--|--|--|
| 種類             | 略記 | 仕様                                            | 備考     |  |  |  |
| 水              | W  | 水道水                                           |        |  |  |  |
| セメント           | С  | 普通ポルトランドセメント,<br>密度 3.15 [g/cm <sup>3</sup> ] |        |  |  |  |
| 細骨材            | S  | 海砂,表乾密度 2.58 [g/cm <sup>3</sup> ]             | 白島沖西島産 |  |  |  |
| 粗骨材            | G  | 砕石 2005, 表乾密度 2.62 [g/cm <sup>3</sup> ]       | 西島産    |  |  |  |
| 混和剤            | Ad | AE 減水剤                                        |        |  |  |  |

表-4 示方配合

| 粗骨材  | スラ         | W/C        | - /-       | 亦左見        | ]   | 単位量 | [kg/m | 3]   | Ad   |
|------|------------|------------|------------|------------|-----|-----|-------|------|------|
| 最大寸法 | ンプ<br>[cm] | w/C<br>[%] | s/a<br>[%] | 空风重<br>[%] | W   | С   | s     | G    | [C   |
| [mm] | [cm]       |            |            |            |     |     |       |      | ~ 70 |
| 20   | 6.5        | 47.9       | 39         | 4.5        | 154 | 322 | 704   | 1116 | 0.75 |

# 2.3 計測位置

各工区には, FEM 解析の着目点に測温機能内蔵型ひず み計および傾斜計を設置した。設置位置を図-3,4に示 す。また,設置状況を写真-2,3に示す。傾斜計は、コ ンクリート版内に温度差が生じたときに傾斜が大きくな る位置を予め FEM 解析で検証し、端部から525mmの位 置とした。なお、ひずみは1供試体あたり25箇所で測定 したが、本論文では中央部および端部から525mmの位 置の測定結果について述べる。



写真-2 ひずみ計 写真-3 傾斜計

### 2.4 計測期間

コンクリートは 2011 年 4 月 8 日に打設し, 直後からひ ずみの測定を開始した。傾斜計は, 材齢 3 週で設置し, 測定を開始した。測定間隔は, コンクリート打設直後か ら 24 時間は 5 分間隔, 2~8 日目までは 30 分間隔, その 後は 1 時間間隔で記録し, 2012 年 3 月 1 日に測定を終了 した。

### 3. 結果

#### 3.1 硬化コンクリート

コンクリートの曲げ強度は、材齢7日で5.38N/mm<sup>2</sup>、 材齢28日で 6.09N/mm<sup>2</sup>となり、設計基準曲げ強度 4.5N/mm<sup>2</sup>を満足した。また,圧縮強度は,材齢7日で
35.4N/mm<sup>2</sup>,28日で46.2N/mm<sup>2</sup>となり,静弾性係数はそれぞれ31.9kN/mm<sup>2</sup>,36.0kN/mm<sup>2</sup>であった。

# 3.2 コンクリート温度測定結果

コンクリート打設直後から測定されたコンクリートの 温度は、ASI工区、CTB工区ともに同様の挙動を示した。 例として ASI工区での温度測定結果を図-5に示す。

測定初期は,硬化時の水和熱による温度挙動があり, 養生を終了した4月24日からは,外気温や日射等の影響 を受け温度挙動が大きくなった。また,5月下旬から6 月中旬にかけては,梅雨時期で曇りの日が多かったため, 温度挙動が小さくなった。春から夏にかけては,表面か ら25mmの位置では1日に15℃以上温度が変動すること があるが,秋以降は10℃程度と変化が小さくなった。

全体的に表面から 25mm の位置は,外気温や日射等の 影響を受けやすいため温度変化が大きくなり,表面から 離れるにつれて温度変化は小さくなる。特に,春から夏 にかけては,表面から 25mm の位置と底面から 25mm の 位置の測定値で 12℃の温度差が生じる日もあった。春か ら夏にかけては,気温が高くなるだけでなく日射量も多 いことが影響していると考えられる。

#### 3.3 ひずみ測定結果

本研究では、コンクリート版表面と底面の温度差によ り変形し、それを拘束することにより発生する拘束ひず みを捉えることを目的としている。そのため、打設後 1 か月以上経過し、さらに24時間毎にひずみをリセット し、そこからのひずみと温度の変化量について検討する ことで水和熱および乾燥収縮等の影響を無視することと した。そして、測定された全ひずみから、コンクリート の線膨張係数を 1.0×10<sup>-6</sup>/℃として式(1)を用いて温度ひ ずみを差し引き、拘束ひずみを求めた。

- $\varepsilon_3 = \varepsilon_2 \gamma \times \Delta_t$ 
  - *ε*3:拘束ひずみ [×10<sup>-6</sup>]
  - *E*<sub>2</sub>:全ひずみ [×10<sup>-6</sup>]
  - γ : 測定対象物の線膨張係数[×10<sup>-6</sup>/℃]

(1)

Δ<sub>t</sub>:温度増分 [℃]

以下での「ひずみ」は式(1)によって計算した拘束ひず みである。昼間は、コンクリート表面の方が温度は高く なるため、供試体は全体的に凸の形状に変形しようとし、 それを自重や路盤が拘束するため、上面に圧縮ひずみ、 下面に引張ひずみが発生する。逆に夜間は、コンクリー ト表面の方が温度は低くなるため凹の形状に変化しよう とし、上面に引張ひずみ、下面に圧縮ひずみが発生する。 その大きさは、路盤からの拘束が大きいほどひずみは大 きく測定されると予想される。

# (1) 各季節の抽出期間

測定期間が長いと温度変化に起因するひずみのほか に、乾燥収縮、クリープ等の影響が入る。そのため、こ こでは10日間の変化を検証することとした。まず、晴天 が続き温度変化が判断しやすい10日間を選定した。次に、 供試体内部の温度勾配が最も小さくなる時間を毎朝選定 し、それをイニシャル時刻と設定した。それぞれのイニ シャル時刻から次のイニシャル時刻までの温度増分を計 算し、つなぎ合わせて240時間分のデータとした。

例として,春の結果を図-6 に,温度増分を図-7 に 示す。同様に選定した各季節の結果を表-5 に示す。な

表-5 各季節の抽出期間

| 季節 | 抽出期間                                        |
|----|---------------------------------------------|
| 春  | 2011年5月12日7時13分~5月22日6時13分                  |
| 夏  | 2011 年 8 月 8 日 7 時 13 分 ~ 8 月 19 日 6 時 13 分 |
| 秋  | 2011年11月6日8時10分~11月17日7時10分                 |
| 冬  | 2012年1月21日9時10分~2月1日8時10分                   |
|    |                                             |



お、測定期間全体を調査し抽出した夏のデータは、測定 期間内で最も温度が高く,冬は最も温度が低い時期であ ったことを確認している。

### (2) 拘束ひずみ

拘束ひずみ [×10-6]

春の拘束ひずみの計算結果を図-8~11 に示す。両工 区ともに、拘束ひずみの変化は、中央部は大きく、端部 から 525mm は小さくなった。また、ASI 工区と CTB 工 区を比較すると、下面のひずみは ASI 工区の方が 40× 10<sup>-6</sup>程度と引張ひずみは大きくなったが、ひずみの振れ 幅は同程度となった。CTB 工区の下面は、昼は引張ひず み, 夜は圧縮ひずみをほぼ対称な形で挙動しているが, ASI 工区の方は全体的にプラス側(引張側)で挙動して いる。図-9および図-11に示すように、端部から525mm の位置における拘束ひずみを比較すると、表面から 25mm(上)と底面から 25mm(下)の拘束ひずみは,

ASI 工区の方がひずみは小さくなった。コンクリート版 端部においては, As 中間層の方がコンクリート版端部に おける拘束を小さくしていると考えられる。

# 3.4 傾斜測定結果

模擬供試体では、図-4に示したとおり供試体の南側 と北側の端部から 525mm の位置で傾斜角を測定した。 昼間は供試体全体が凸の形に変形しようとするため、図 -12のようなイメージで変形する。そのとき、傾斜計は それぞれ別の方向に傾くが、傾斜計の正負は同一方向で





傾斜角の推移 (ASI エ区) 図-13





あるため、グラフ上では供試体南側と北側で正負が逆と なって出てくる。

模擬供試体の端部から 525mm の位置において、4 月 28 日から3月1日まで測定された結果を図-13、14 に示 す。全体的に、夏から冬に向かって傾斜が大きくなって いく傾向となった。また、ASI 工区は南側に比べて北側 の方が2倍程度大きく傾いたが、CTB 工区はほぼ対称な 形で傾斜角が大きくなった。

次に、各季節での ASI 工区と CTB 工区の傾斜の比較 をするため、北の傾斜角の符号を南に合わせ平均化した。 結果を図-15~18 に示す。全体的に ASI 工区の方が傾斜 の変動は大きくなり、特に夏においてその傾向は顕著と なった。また、朝方もしくは夕方に傾斜角が大きく変動 するとき、ASI 工区の変動の早さに比べて、CTB 工区の 方が数時間遅れて変動している結果となった。

以上のことより, ASI 工区では模擬供試体端部の変形 は大きくなっていることから, As 中間層は柔軟性があり, 端部での応力緩和等がより大きいと考えられる。

# 4. コアによる付着状況の確認

測定終了後,コンクリート版の周囲の土砂を除去し, 供試体と路盤の界面の付着状況等について調査した。

### 4.1 コア採取位置

コア採取位置を図-19に示す。各工区で4本ずつ採取 した。





#### 4.2 付着状況

採取されたコアの状況を写真-4 に、端部からの採取 コアを拡大したものを写真-5 に示す。ASI 工区では、 中央部および端部ともに、コンクリートと As 中間層界 面の付着を確認したが、端部のコアは採取後、時間経過 とともにコンクリートと As 中間層の界面ではがれが進 行し、最終的には2層に分かれた。また、中央部から採 取したコアにおいて、セメント安定処理路盤の上面から 2~5cm の位置で砂利化していた。

CTB 工区では、中央部のコアはコンクリートとセメン ト安定処理路盤の界面は付着していたが、端部のコアは 端部側から亀裂が入っていた。また、その下 2~5cm の 位置で砂利化し、一部は路盤材が粉砕されているのも確 認された。



(a) ASI エ区 (b) 写真-4 採取コア

(b) CTB 工区



(a) ASI エ区(b) CTB エ区写真-5 端部コア拡大状況



写真-6 端部コア孔内界面状況

さらに、界面の状況を確認するため、端部でのコア採 取後にコア孔内の状況を撮影したものを**写真-6**に示す。 ASI 工区において、コンクリートと As 中間層の界面にひ び割れが確認できた。また、CTB 工区端部で砂利化が確 認された位置では、細粒分が抜け出し、亀裂のように見 える。これらの損傷は、端部側から入っていることから、 コンクリート版の挙動がコンクリート版と路盤の界面ま たは界面から 2~5cm 以深に影響を及ぼすことを示して いると考えられる。

なお,路盤材料の強度については,供試体作製時に一 軸圧縮試験および平板載荷試験を実施し,所要の強度を 満足していることを確認済みである。また,供試体周囲 に防水処理を施していたことから,本実験では雨水等の 浸入の可能性は低いと考えられる。

### 5. 考察

模擬供試体から得られた,拘束ひずみと傾斜角から, 両工区とも端部では供試体底面付近の拘束ひずみが小さ くなり,表面で測定された傾斜角が大きくなることを確 認した。しかし,中央部ではあまり違いが見られなかっ た。傾斜計のデータから,端部においては温度勾配によ る端部のそり拘束がASI工区では小さいことがいえるが, 中央部では自重により拘束されているため,拘束の度合 いが CTB 工区と変わらないと考えられる。

また,コンクリート版端部からコアを採取したところ, CTB 工区では端部側からひび割れが入っており,ASI 工 区では時間経過とともにコンクリート界面からはがれが 進行した。少なくとも,工区に限らず端部でコンクリー ト版が動いていたと推察される。特に,ASI 工区の傾斜 角は CTB 工区より大きく変動していたにも関わらず,コ ア採取直後は付着していた。コンクリート版と As 中間 層界面にひび割れは入っていたが,追従することで路盤 内への雨水等の浸入,セメント安定処理路盤の耐久性低 下を遅らせる可能性がある。

現場での損傷形態として CRC 版下面の空洞への雨水 の浸透やエロージョンの発生があることから,界面が付 着していた As 中間層の方が耐久性付与のためには良い と考えられる。これを維持するためにも、実施工におい ては、端部継目への止水処理も必要と考えられる。

# 6. まとめ

本研究では, As 中間層が CRC 版の挙動に及ぼす影響 について検証するため, CRC 版の一部を想定した模擬供 試体を作製し,長期間にわたり温度,ひずみおよび傾斜 角を測定した。その結果をまとめると以下のようになる。

- (1) コンクリート版中央部における底面付近の拘束ひず みは、CTB 工区の場合,昼に引張ひずみ、夜に圧縮 ひずみとほぼ対象な形で挙動したが、ASI 工区の場合, 昼夜に拘わらずほぼ引張ひずみ側で挙動した。
- (2) 端部付近の拘束ひずみは, ASI 工区の方が CTB 工区 に比べ拘束ひずみは小さくなったことから, As 中間 層の拘束ひずみ低減効果が考えれる。
- (3) 全体的に ASI 工区の方が傾斜の変動は大きくなり, 特に夏においてその傾向は顕著となった。 CTB 工区 の方が緩やかに, As 中間層はフレキシブルに挙動し ていることから, コンクリート版の拘束はセメント 安定処理路盤の方が大きいといえる。
- (4) 中央部では、両工区ともコンクリート版と路盤は付着していることが確認されたが、端部では CTB 工区は端部側からひび割れが入り、ASI 工区は時間経過とともにコンクリート版界面からはがれが進行した。 As 中間層が追従し、CRC 底面におけるひび割れの進行を抑制している可能性がある。

以上より,コンクリート版端部において路盤の種類に よる挙動の違いが判明した。しかし,模擬供試体と実物 大の CRC 版は,規模も拘束の大きさも異なるため,拘 束ひずみや傾斜角だけでなく,硬化初期のひび割れ発生 への影響も不明確である。そのため,今後,実物大で検 証し,多角的な点から評価を行う予定である。

#### 参考文献

- 東日本高速道路(株),中日本高速道路(株),西日本高 速道路(株):設計要領 第1集 舗装編,(株)高速道路 総合技術研究所,2012
- (社)日本道路協会:舗装設計便覧(平成十八年版), 2006.2
- 西澤辰男,七五三野茂,小松原昭則,小梁川雅:連 続鉄筋コンクリート舗装の温度応力に関する研究, 土木学会論文集,No.578/V-37, pp.123-132, 1997.11
- 4) 尾関孝人:空港コンクリート舗装版の温度応力に着 目した疲労度設計手法の合理化に関する研究,京都 大学学位論文,2011.9