論文 ラッシングベルトで能動拘束したせん断損傷RC柱に関する実験的研 究

中田 幸造^{*1}·前田 興輝^{*2}·森下 陽一^{*3}·照屋 秀明^{*4}

要旨:緊張ラッシングベルトによる能動拘束を活用した応急補強技術は,せん断損傷RC柱のひび割れを閉 塞させるため,せん断損傷により劣化した耐力や靭性,ならびに鉛直荷重支持能力を回復させることができ る。しかし,実際の柱は断面が大きく,従って,実験室で導入しているような大きな能動側圧を与えられな いことが考えられる。そこで本研究では,能動拘束を活用する本応急補強技術にエポキシ樹脂補修を組み合 わせ,能動側圧,補強間隔,エポキシ樹脂補修の有無を実験変数とした応急補強実験を行い,補強後の履歴 性状について検証を行った。

キーワード:プレストレス,応急補強,ラッシングベルト,エポキシ樹脂,アラミド繊維

1. 序

アラミド繊維ベルトとラチェットバックルで構成され るラッシングベルト(荷締め具)を活用した応急補強技 術は, せん断損傷 RC 柱を能動的に横拘束するため, 補 強後の RC 柱は曲げ降伏し,その結果,耐力と靭性に優 れた履歴性状を示すことが分かっているい。補強後の損 傷RC柱が曲げ降伏を示すのは、(1)せん断損傷によっ てバラバラになったコンクリートが能動拘束によって再 一体化に近づく,(2)アラミド繊維ベルトの優れたせん 断補強効果,などが理由として考えられる。しかしなが ら,実験室では縮小試験体を用いるため,比較的大きな 能動側圧を損傷 RC 柱に導入可能であるが,断面の大き な実際の柱では,張力が同じ場合は能動側圧が小さくな る。能動側圧が小さいとひび割れが閉塞し難く,水平耐 力及び靭性能の回復に影響があることが考えられる。そ こで本研究では,施工の迅速さは多少犠牲になるが,本 応急補強技術にエポキシ樹脂補修を併用することであら かじめひび割れを埋めておき,不足する能動側圧の役割 を補うことができるのかを研究目的とした。そのため、 損傷 RC 柱へのエポキシ樹脂補修の有無,能動側圧を実 験変数とした応急補強実験や、本補強を施した無損傷RC 柱の水平加力実験を行い,併用の効果を検証した。

2. 実験計画

試験体一覧をTable 1に,試験体に用いた材料の機械的 終了した。 性質をTable 2にそれぞれ示す。試験体は1辺が250mmの その後,2 正方形断面で(1/2.4の縮尺),柱高さ500mm,せん断ス 低圧注入し パン比1.0の極短柱である。主筋はD10を12本使用し 合板で応急 (*p_s*=1.36%),帯筋は3.7¢を105mm間隔で配筋した エポキシ格 *1 琉球大学 工学部環境建設工学科准教授 博士(工学)(正会員) *2 琉球大学 工学部博士研究員 博士(工博)(正会員) *3 琉球大学 工学部環境建設工学科教授 工博 (正会員)

 $(p_w=0.08\%)$

補強の方法は, せん断損傷した(あるいは無損傷の) RC柱試験体の表面に切り鋼板(厚さ3.2mm)と角を丸く 削った合板(厚さ12mm)を当て,その上からラッシン グベルトを巻き付けて緊張力を導入した。ラッシングベ ルトは,アラミド繊維ベルトにラチェットバックルを取 り付け,ベルトの自由端をバックルに通してレバーを回 転させることで張力が導入できる。柱のウェブ面に位置 するベルトの長さ方向中央部にエポキシ樹脂硬化部を製 作し,ひずみゲージを貼付することでベルトのひずみを 測定した。

試験体総数は7体であり,無損傷のRC柱に補強を施し たFSシリーズとせん断損傷RC柱に補強を施すERシリー ズの2種類から構成される。FSシリーズでは,ERシリー ズとの比較のため,健全なRC柱にERシリーズと対応す る補強を施した。試験体 ER12S-13Ms'(以下, ER12S-を 省略)は13Ms, 13Mseと, 6Ls', 6Ms'はそれぞれ 6Lse, 6Mseと対応する。次に, ERシリーズの実験手順をFig.1 に示す。実験では、RC柱が地震でせん断損傷したことを 想定するため、健全な柱試験体を軸力比0.2の一定軸力下 でせん断損傷させた(Fig.1(a))。せん断損傷実験では, RC柱に与える損傷レベルを制御するため、アラミド繊維 ベルト(2ply)を150mm間隔(3段)で配置して水平加 力を行い,目標の損傷レベルIV²⁾に達した時点で加力を 終了した。この際,残留水平変位と軸力はゼロに戻した。 その後,2液混合型の低粘度エポキシ樹脂をひび割れに 低圧注入し,約2日後にラッシングベルトと鋼板および 合板で応急補強を施し,再び繰返し水平加力を行った。 エポキシ樹脂補修を行うことで,能動拘束によるひび割

Specimen	FS series			ER series					
	ER12S-13Ms'	ER12S-6Ls'	ER12S-6Ms'	ER12S-13Ms	ER12S-13Mse	ER12S-6Lse	ER12S-6Mse		
Elevation									
Aramid fiber belt	double-@130	double-@63		double-@130		double-@63			
Damage level				IV	IV	IV	IV		
(Max. crack width)		-		(3.0mm)	(3.0mm)	(1.6mm)	(4.0mm)		
Initial strain of fiber reif.	0.28%	0.16%	0.33%	0.32%	0.27%	0.14%	0.29%		
(Initial force)	(11.6kN)	(6.6kN)	(13.7kN)	(13.3kN)	(11.2kN)	(5.8kN)	(12.0kN)		
σ_B	21.1MPa	24.9MPa		21.1MPa		24.9MPa			
σ_r	0.72MPa	0.84MPa	1.74MPa	0.82MPa	0.69MPa	0.74MPa	1.53MPa		
Plywood	470 × 250 × 12mm								
Steel plate	470 × 240 × 3.2mm								
With or without of epoxy resin	_			-	With epoxy resin				
	$M_{1}(M_{D}) = 10 M_{1}(M_{D}) = 0.0 D M_{1} = 10 D M_{1}(M_{1} = 1.0 G) M_{1} = 0.0 D M_{1}(M_{1} = 0.0 D M_{1})$								

Table 1 Details of column specimens

Common details $M/(VD) = 1.0, N/(bD \sigma_B) = 0.2$, Rebar: 12-D10 ($p_g = 1.36\%$), Hoop: 3.7 ϕ ·@105 ($p_w = 0.08\%$). Notes: $\sigma_B =$ cylinder strength of concrete, $\sigma_r =$ lateral confining pressure, M/(VD) = shear span-to-depth ratio, $N/(bD\sigma_B) =$ axial force ratio.

Table 2 Mechanical properties of materials

Reinforcement		a (mm ²)	σ_y, σ_u^* (MPa)	E (GPa)	Е _и (%)
Rebar	D10	71	371	195	-
Hoop	3.7¢	11	601	196	-
Steel plate	t = 3.2mm	-	305	205	-
Aramid fiber belt	t = 0.57mm	9.7	2381*	107	2.2

Notes : a = cross sectional area, $\sigma_y = \text{yield strength of steel}$, $\sigma_u = \text{ultimate}$ strength of fiber reinf., E = Young's modulus of elasticity, $\varepsilon_u = \text{ultimate}$ strain of fiber reinf..

Fig. 1 Procedure of loading test

れ閉塞をサポートできるかを検証する。

各試験体の実験変数は、アラミド繊維ベルトの間隔 (130mm,63mm)と導入する緊張ひずみ(1,400 μ :試験 体名にはLで表示,3,000 μ :試験体名にはMで表示)、エ ポキシ樹脂補修の有無である。式(1)で計算した能動側 圧 σ_{r} のうち, σ_{r} =0.7 ~ 0.8MPa(Table 1)は実際の柱断面 への導入を考慮し、低く設定した値である(断面600 × 600mm、補強間隔63mm、緊張ひずみ3000 μ を仮定)。な お,6Mseへのエポキシ樹脂補修と大きな能動側圧による 応急補強は、本補強法による最大の補強である。

$$\sigma_r = (2_A a) / (b_A s)_A E \cdot \varepsilon_{pt} \tag{1}$$

ここで, $_{a}a$:アラミド繊維ベルトの断面積(38.8mm²),b: 柱幅, $_{a}s$:アラミド繊維ベルトの間隔, $_{a}E$:アラミド繊維 ベルトのヤング係数, ε_{m} :初期緊張ひずみ。

水平加力実験は,Fig.2に示す装置により,一定軸力の 下(軸力比η=0.2),部材角R=0.125%,0.25%を各1回 ずつ,0.5% ~ 3.0%を0.5%の増分で各2回,その後,可 能であれば,R=4.0%,5.0%を各1回繰り返す加力プログ ラムで行った。

3. 実験結果

3.1 水平荷重 *V*-部材角 *R*関係 (FS シリーズ)

健全な RC 柱にラッシングベルトと鋼板,合板による 補強を施した試験体の水平荷重V-部材角R関係と柱の軸 ひずみ ε,と部材角 R関係を Fig. 3に示す。Fig. 3にはシリ ンダー強度による多段配筋柱の曲げ強度計算値³⁾を破線 で,後述するアラミド繊維ベルトを考慮した修正荒川 mean式によるせん断強度計算値⁴⁾を実線で示した。また, 能動側圧 σ,と式(2)によるアラミド繊維ベルトの補強比

Table 3 Observed cracking patterns after cyclic loading test

*_p*も示した。

$$A_{A}p = (2_{A}a)/(b_{A}s)$$
 (2)

Fig. 3より,能動側圧が低い(a)13Ms'と(b)6Ls'は それぞれR=0.75%,0.5%で最大水平耐力を記録し,そ の後は軸ひずみの圧縮側への進行を伴いながら水平耐力 が低下した。最大水平耐力は曲げ強度計算値には到達し ておらず,また,主筋の降伏は観察されなかった。Table 3に示す,補強材を取り外した後の最終ひび割れ状況を 見ても斜めひび割れが卓越おり,(a)13Ms'と(b)6Ls' はせん断破壊したと判断される。なお,13Ms'と6Ls'の最 大水平耐力とせん断強度計算値との整合は十分ではない。 本補強では,合板の上にラッシングベルトを巻き付けて おり,加力中にラッシングベルトの合板へのめり込みが 確認されている。従って,めり込みによってラッシング ベルトのせん断補強効果がやや減少していることが整合 が十分でなかった理由として考えられる。一方 Fig. 3(c) の 6Ms' 試験体は, R=1.5% において最大水平耐力は曲げ 強度計算値に到達し,その後も耐力低下の少ない履歴性 状を示した。6Ms'試験体では柱頭隅主筋の降伏が観察さ れた。Table 3 に示す最終ひび割れ状況を見ると,斜めひ び割れが生じているが,その幅は細く,また,柱端部に は曲げひび割れが観察された。6Ms'試験体は曲げ破壊し たと判断される。Fig.3(c)において,曲げ強度計算値 とせん断強度計算値は近い値だが,一方で最大水平耐力 は曲げ強度計算値の1.1倍を示したにも関わらず、せん断 破壊を起こすことなく,曲げ破壊した。せん断強度は曲 げ強度計算値の1.1倍以上あることが類推される。せん断 強度のより正確な評価は今後の課題である。

3.2 せん断損傷実験の結果(ERシリーズ)

せん断損傷実験により得られた水平荷重V-部材角R関

Fig. 4 Measured V-R relationships (Shear failure test)

Notes: IV = damage level ²⁾, () = max. crack witdh (depth side).

係をFig.4に,実験終了後のひび割れ図(ウェブ面),損 傷レベル,最大残留ひび割れ幅をTable4にそれぞれ示 す。Fig.4には,シリンダー強度による多段配筋柱の曲げ 強度計算値³⁾を破線で,後述するアラミド繊維ベルトを 考慮した修正荒川mean式によるせん断強度計算値⁴⁾を実 線で示している。どの試験体も部材角R=0.5%までにせ ん断破壊し,その後,目標とする損傷レベルに到達する までそれぞれ加力を行った。損傷レベルは日本建築防災 協会の判定基準²⁾に基づき,柱せん断面の斜めひび割れ 幅等により総合的に評価している。その結果,どの試験 体も損傷レベルIVに該当するが,損傷程度は必ずしも同 等とはならない。なお,せん断損傷実験において,全て の試験体のせん断面における柱頭の帯筋は降伏していな かったが,柱高さ方向中央部の帯筋は降伏していた。ま た,どの試験体でも主筋の座屈は確認されなかった。

3.3 応急補強したRC柱の水平加力実験結果(ERシリーズ) 応急補強後の水平加力実験で得られた水平荷重V-部材 角 R 関係を Fig.5 に,実験終了後のひび割れ図を Table 5 に示す。Fig.5 には能動側圧 σ,と補強比_Apも示した。Fig. 5(a)より,エポキシ樹脂補修を行わず応急補強した13Ms は,水平剛性は小さいものの耐力低下の少ない履歴性状 を示した。Fig.5(b)より,エポキシ樹脂補修を行って 応急補強した13Mseは,対応する(a)13Msと比較して 水平剛性が大きい。しかし,最大水平耐力は(a)13Msよ りやや大きい程度で,せん断損傷実験時の最大水平耐力 と同程度である。Fig.5(c)より,能動側圧が(b)13Mse

emergency retrofitted specimens

Table 5 Observed cracking patterns after emergency retrofit test

とほぼ同じでエポキシ樹脂補修と応急補強を行った6Lse は,最大水平耐力と水平剛性は(b)13Mseとほぼ同程度 の結果となった。R=1.5%時にエポキシ樹脂が割れるよう な音が聞こえた後,耐力低下を生じ始めた。(a)13Ms, (b)13Mse (c)6Lse試験体では主筋の降伏は生じず(Fig. 6), また, Table 5 に示す応急補強実験後の最終ひび割れ 状況より, せん断損傷実験後から斜めひび割れが増加し ているため,これらの試験体の破壊モードはせん断破壊 であることが伺える。Fig.5(d)より,エポキシ樹脂補 修を行い,かつ,大きな能動側圧を導入した6Mse試験体 は, R= ± 1.5% で最大水平耐力に到達した。このときに は隅主筋の降伏が確認できたが(Fig.6),同時にエポキ シ樹脂が割れるような音が聞こえ,これ以降耐力は緩や かに低下した。実験後の最終ひび割れ状況では曲げひび 割れが観察できたこと(Table 5),隅主筋の降伏が確認さ れたことから, 6Mse は曲げ破壊したと考えられる。 3.4 スケルトンカーブ

Fig.7にスケルトンカーブの比較を示す。コンクリート 強度が異なるため,水平荷重*V*は*bDσ*_{*B*}で無次元化した。 **Fig.**7(a)は,無損傷のRC柱にラッシングベルトと合板

および鋼板で補強を施した6Ms'と6Ls'の比較である。能 動側圧(初期緊張ひずみ)が6Ls'の2倍である6Ms'試験 体は,せん断破壊した6Ls'とは異なり靭性に富む曲げ破 壊となった。ラッシングベルトに導入した初期緊張力が せん断補強効果に寄与したことがわかる。Fig.7(b)は せん断損傷実験後に応急補強を施した試験体である。 6Mseは6Ms', 6Lseは6Ls'に対応する。6Mseと6Lseのス ケルトンカーブは似た形状をしているが、6Mseは主筋が 降伏しており,一方で6Lseは主筋の降伏は確認されな かった。また, Fig.7(a)を考えると, 6Lse はせん断補 強量が不足したために応急補強後もせん断破壊を起こし たといえる。Fig.7(c)は能動側圧が大きく,かつ,曲 げ破壊した 6Ms' と 6Mse 試験体の比較である。Fig. 7(c) より, 6Ms'と6Mse試験体の水平荷重には差がある。Fig. 3のように, 6Ms' は多段配筋柱の曲げ強度計算値に到達 しているが、6Mseは到達していない(Fig.5)。この理由 としては、6Mse試験体の中段主筋にはひずみゲージを貼 付しなかったが、外側主筋の軸方向ひずみに基づいて仮 定した,柱断面のひずみ勾配から推測した中段主筋のひ ずみは降伏ひずみ以下であることから,中段主筋の曲げ 強度への貢献度が小さいこと,また,エポキシ樹脂で補 修し,かつ,大きな能動側圧を導入したたものの,6Mse の見かけのコンクリート強度が低下していることが考え られる。Fig.7(d)は同じ能動側圧を導入して応急補強 を行った 6Lse と 13Mse 試験体の比較である (13Mse の補 強間隔は130mmだが,緊張ひずみが6Lseの2倍である)。 Fig. 7(d)より, 6Lseと13Mseはほぼ同じ結果であり,本 実験の範囲では能動側圧が同じであれば補強間隔の差は 影響しないことが伺える。なお,全ての試験体でアラミ

ドベルトの軸剛性 EA は同じだが, Fig.7(a)の結果は, 最大水平耐力時にある一定値以上の張力を確保できれば せん断破壊を防止できると考えられることから,今後は 軸剛性 EA を変数にした検証も必要である。

3.5 アラミド繊維ベルトのひずみ増分

Fig. 8 は, せん断破壊した試験体 13Ms', 6Ls', 13Ms, 13Mse, 6Lseの最大水平耐力時におけるアラミド繊維ベ ルトのひずみ増分 Δ_Aεである。ひずみ増分は全段のベル トの平均値である。Fig. 8のように,ひずみ増分は小さい が,エポキシ樹脂補修を行っていない13Msのみひずみ増 分が0.1% とやや大きい。補修を行っていないため, 斜め ひび割れの拡幅によってひずみ増分が大きくなったもの と考えられる。

Fig. 8 Increment of aramid fiber belt strain from initial tension strain at V_{max}

3.6 曲げ破壊した試験体のコンクリート強度

本節では,能動拘束の効果を検証するため,曲げ破壊 した応急補強試験体 6Mse の正負の最大水平耐力実験値 を用いてコンクリート強度を逆算する。本研究ではせん 断損傷 RC 柱を能動拘束(応急補強)して得られたコン クリート強度を「修復コンクリート強度」と呼ぶことに する。逆算においては,鉄筋の強度曲線とコンクリート の強度曲線の単純累加曲線が,正負の最大水平耐力実験 値の平均を通過するようなコンクリート強度を求めた (具体的には単純累加曲線がFig.9に示す太実線となるよ うなコンクリート強度を求めた)。なお,前述のように 6Mse試験体の中段主筋は降伏していないことが考えられ るため,1段配筋柱として計算を行う。このようにして 求めた軸力Nとせん断力Vの関係をFig.9に示す。Fig.9 には損傷レベルIV における損傷コンクリート強度 σ.

(0.1 $\sigma_{B}^{(5)}$)の強度曲線も示した。なお,最大水平耐力時の 鋼板のひずみは小さいため(500µ以下),コンクリート の強度曲線には鋼板の拘束効果はほとんど含まれていな い。Fig.9のように,応急補強を施すことによって修復コ ンクリート強度f'ccは16MPaとなった。最大水平耐力は 釣合軸力以下の曲げ引張領域にあり,主筋が引張降伏し たことと整合する。得られた修復コンクリート強度f'cc を用いて式(3)⁴⁾に示す修正荒川 mean 式でせん断強度 V_{su} を計算すると196kNとなる。この結果は6Mseの最大 水平耐力192kNを上回り,差は小さいが曲げ破壊した実 験結果と整合する。

$$V_{su}/bj = \tau_c + \tau_s + 0.1\sigma_0 \tag{3}$$

$$\tau_c = \alpha K_u K_p (17.6 + \sigma_B) / \{ M / (V \cdot d) + 0.12 \}$$
(4)

$$\tau_s = 0.845 \sqrt{p_w \sigma_{wv} + A p_A \sigma_e} \tag{5}$$

$${}_{A}\sigma_{e} = {}_{A}E \cdot_{A}\varepsilon_{T} \tag{6}$$

$${}_{A}\varepsilon_{T} = \varepsilon_{pt} + \Delta_{A}\varepsilon \tag{7}$$

ここで, τ_e :コンクリートのせん断応力度, τ_s :せん断補 強筋のせん断応力度, σ_a :せん断強度時のベルトの存在 応力度, σ_a :せん断強度時のベルトの存在ひずみ, $\Delta_A \varepsilon$: せん断強度時のベルトの初期緊張ひずみからのひずみ増 分(=0.2%)。他の変数については文献⁴⁾を参照されたい。 3.7 せん断破壊した試験体のコンクリート強度

応急補強後にせん断破壊した試験体13Ms,13Mse,6Lse の修復コンクリート強度f'ccを式(3)に示したせん断強 度式を用いて逆算を試みる。せん断損傷を受けているた め,式(3)のうち,τ_cとτ_sへの影響があると考えられる が,せん断補強材の項τ_sについては,せん断強度時のベ ルトのひずみ増分実験値を入れることでその影響を考慮 する。このようにして求めた逆算の結果をFig.10に示 す。参考のために,前節で求めた6Mseの修復コンクリー ト強度も示した。なお,Fig.10に示す13Ms,13Mse,6Lse の結果は,せん断強度(最大水平耐力)を発揮するのに 必要な見かけ上のコンクリート強度であり,せん断補強 量が多くなればFig.10に示すコンクリート強度も高くな

る可能性がある。Fig. 10の13Msと13Mseの結果より,エ ポキシ樹脂補修を行うことで修復コンクリート強度が大 きくなっている。エポキシ樹脂がひび割れ間の隙間を埋 め,ひび割れ間の滑りを抑制したことが水平剛性だけで なく,最大水平耐力がやや大きくなった理由だと考えら れる。

4. 結論

(1)能動側圧が小さい場合,エポキシ樹脂を使用することで水平剛性を改善できる。

(2)能動側圧が小さい場合,応急補強RC柱はせん断破壊となったが,耐力低下の緩やかな履歴性状となった。
 (3)能動側圧が同じ場合,補強間隔の差が応急補強後の履歴性状に与える差異は小さい。

(4) 十分なせん断補強量を確保し,かつ,エポキシ樹脂 補修を併用することにより,応急補強 RC 柱は曲げ降伏 型の履歴性状を示したが,健全柱の曲げ強度実験値との 差は大きかった。

謝辞

本研究は日本学術振興会の平成24年度科学研究費補助 金(基盤研究(A),課題番号:20246091,代表者:山 川哲雄)により行われた。実験では砂川恒雄琉球大学技 術職員,大学院生 KARWAND HOMAYOON,NOORI MOHAMMAD ZAHIDの尽力を頂いた。また,アラミド繊 維ベルトはファイベックス(株)から提供を受けた。

参考文献

 (1)中田幸造,山川哲雄,原口貴臣,森下陽一:ラッシングベルトで能動拘束したせん断損傷RC柱の水平加力 実験,コンクリート工学年次論文集,Vol. 34,No. 2, pp.139-144,2012.7

(2)日本建築防災協会:震災建築物の被災度区分判定基準および復旧技術指針,2001

(3)日本建築学会:建築耐震設計における保有耐力と変形性能,1990

(4)前田興輝,山川哲雄,新城良大,中田幸造:緊張ア ラミド繊維ベルトで横補強した RC 柱の正負繰り返しせ ん断実験,コンクリート工学年次論文集,Vol.28,No.2, pp.1147-1152,2006

(5) 上松茂,山川哲雄,吉井大輔,中田幸造:せん断損 傷 RC 極短柱の残存軸耐力と応急補強実験,コンクリー ト工学年次論文集,Vol. 28,No. 2, pp. 1123-1128,2006