論文 加熱を受けたせん断破壊先行型 RC 柱の残存耐力に関する研究

高木 仁之*1·小川 徽*2·白石 一郎*3

要旨:本研究は,都市直下型地震で多数の建物が火災被害を受けた場合を想定し,当該建築物の短期間継続 使用の可能性を調査するものである。加熱炉で加熱を受けた RC 柱の模型実験を実施し,その耐震性能劣化 を検討した。本報は文献¹⁾,文献²⁾の継続としてせん断破壊先行型 RC 柱を計画し,せん断補強筋量の影響 や加熱継続時間による劣化の違いを検討している。さらに,曲げせん断加力実験終了後,軸力載荷実験を実 施し,加熱および水平力による損傷を受けた RC 柱の軸支持能力等についても検討した。

キーワード:鉄筋コンクリート柱,耐火,せん断破壊先行型

1. はじめに

2011年の東日本巨大地震発生後,宮城県気仙沼市一帯 が大規模火災に見舞われた。このような災害時,被災者 らの避難先は公共施設である。これらの多くはRC構造 の建築物であり,火災後も多くの場合構造体自体は燃焼 せず,また熱による変形も少ないが,実際には構造性能 において耐力の低下が考えられる。よって火災後の RC 構造物が,その後の余震や載荷荷重に耐え得るのか懸念 される。しかし,RC部材の耐火実験は少なく,普通強 度コンクリートを用いた RC 構造物の実験データは特に 少ない。

本稿は普通強度コンクリートを用いたせん断破壊モ ード柱の試験体を高温加熱した後に曲げせん断加力実験, および軸圧縮実験を行い,構造性能劣化の検討等をする。 ただし,通常の地震→火災→余震というサイクルではな く,本稿では火災被害後の地震に対する耐力を検討する。

2. 実験の概要

2.1 試験体

試験体を図-1, 試験体一覧を表-1に示す。試験体は 3,4 階建ての学校建築の RC 柱を想定したもので,約 1/2 スケールの断面 350mm×350mm(かぶり厚さは 40mm), 高さ 1050mm である。全てせん断破壊モード柱として計 画する。試験体 No.1~No.3 は RC 基準最低量の帯筋比 pw=0.2%で No.1 は加熱なし, No.2 は1時間加熱, No.3 は 2時間加熱である。No.4,No.5 は pw=0.6%で No.4 は加 熱なし, No.5 は 2時間加熱, また No.6 は pw=1.0%の 2 時間加熱とする。

2.2 加熱方法

加熱温度は ISO834 標準加熱温度時間曲線に準拠し,1 時間後に 945℃,2 時間後に 1049℃に達する加熱を実施 した。なお,加熱においては試験部以外の燃焼を防ぐた め,試験部外のスタブには耐火被覆を施した。また,加熱

*1 明治大学 理工学部建築学科 准教授 工博 (正会員)

*2 大成建設株式会社 (前 明治大学大学院 理工学研究科建築学専攻) 修士(工学)

*3 日本工業大学 工学部建築学科 教授 工博 (正会員)

図-2 炉内温度(1時間加熱:No.2,2時間加熱:No.3) ま-1 試験体一覧

		2 1 14				
試験体	軸圧縮応力度	コンクリート 実圧縮強度	帯筋比	加熱継続時間	材令	
	(N/mm^2)	(N/mm ²)	(%)	(時間)	(日)	
No.1		28.9		0		
No.2		37.0	0.2	1	≒180	
No.3		27.3		2		
No.4	4	24.9	0.6	0		
No.5		30.2		2		
No.6		29.6	1.0	2		
	No 1 o No 2	主筋	6-D19	9, sσy=401 N/r	nm²	
	No.1~No.3	帯筋	2–D6, σ wy= 366N/mm ²			
使用鉄肋	No 4 to No 6	主筋	$8-D22$, s $\sigma y = 400 \text{N/mm}^2$			
	No.4∼No.6	帯筋	2-D10, σ wy= 344N/mm ²			

時の軸力加力等は一切行っていない。以下 ISO834 式(1) による炉内温度計測結果の一部を図-2 に示す。

(1)

 $T=345\log_{10}(8t+1)+20$

T:平均炉内温度(℃), t:試験体の加熱経過時間(分)

2.3 加力·計測計画

本研究は加熱後に曲げせん断加力実験を行う。また曲 げせん断加力実験終了後に,残存軸耐力の確認のため軸 圧縮載荷実験を行った。曲げせん断実験の加力は鉛直ジ ャッキにより一定軸力(4N/mm²)を作用させながら,水平 アクチュエータにより水平力を正負交番繰り返し載荷で 変位角 1/50 まで行い,軸圧縮実験では鉛直ジャッキによ り単調繰り返し載荷を行った。ただし,軸圧縮実験では 加力機の能力が最大 2000kN のため,それに達する手前 のステップに至るまで載荷を行った。また,曲げせん断 実験では水平変位計を,軸圧縮実験では鉛直変位計を使 用した。曲げせん断実験の加力装置と変位計位置を図-3,軸圧縮実験を同様に図-4に示す。

3. 実験後の破壊性状

図-5 に, 試験体 6 体それぞれの破壊状況を示す。写 真はそれぞれ(a) 加熱後(加力前), (b) 曲げせん断破壊 実験終了時, (c) 軸圧縮実験終了時の写真である。

(1) 加熱後(加力前)

No.1,No.4 は無加熱・無傷の状態である。1 時間加熱の No.2 は柱中央の隅角部脱落と表面に無数のひび割れが 生じていた。2 時間加熱の No.3,No.5,No.6 はスタブ付近 を除き著しく表面の損傷・剥落が生じている。No.5 は一 部, No.6 は大部分のかぶりが脱落し,帯筋が露出するま でに至っていた。

(2) 曲げせん断破壊実験終了時

pw=0.2%かつ加熱なしの No.1 は変位角 1/50 の加力で突 然試験体を分断するせん断ひび割れが発生し,終局を迎 えた。pw=0.2%で加熱ありの No.2,No.3 は,変位角 1/100 あたりで主筋に沿ったひび割れが進行し,変位角 1/50 で 加力を終了させた。pw=0.6%で加熱なし No.4 は加力とと もにせん断ひび割れが進行し,いくつもの斜めひび割れ が生じた。pw=0.6%以上で 2 時間加熱の No.5,No.6 はか ぶりが大きく脱落しゆき,主筋に沿ってのひび割れが進 行した。

(3) 軸圧縮実験後

pw=0.2%かつ無加熱の No.1 は斜めに亀裂したせん断

図-3 曲げせん断実験の加力装置(左)と変位計位置(右)

図-4 軸圧縮実験の加力装置(左)と変位計位置(右)

ひび割れに沿って終局を迎えた。pw=0.2%で加熱ありの No.2,No.3, pw=0.6%で無加熱の No.4 は主筋に沿ってひ び割れが進行し, コンクリートかぶりが剥落して圧壊し た。pw=0.6%以上で 2 時間加熱の No.5,No.6 はかぶりが 脱落後, 柱中央付近の帯筋 135° フックが外れ, 終局状 態に達した。

4. 曲げせん断破壊実験の結果

4.1 初期剛性

曲げせん断破壊実験で得られた荷重-変位関係を図

-6 に示す。各試験体の荷重変形曲線において初期の傾き(全水平変形に対するせん断力)より実験値の初期剛性 ko を求めた。ただし,初期剛性の計算値 ke は以下に示す弾性剛性式(2)により計算した。

$$k_{e} = \left(\frac{h_{o}^{2}}{12EI} + \frac{kh_{o}}{GA}\right)^{-1}$$
(2)

ここで,ho:部材長,E:コンクリートのヤング係数(テス トピース値より算出),I:断面2次モーメント,κ:形状係 数,G:コンクリートのせん断弾性係数,A:断面積。それ ぞれの初期剛性結果を**表-2**に示す。

加熱ありの No.2, No.3, No.5, No.6 の実験値は計算値を大 きく下回り,加熱による剛性低下が伺える。また,実験 値における残存初期剛性比は pw=0.2%においては No.2 は No.1 の 40%(78.0/195.9=0.40), No.3 は 24%(46.4/195.9 =0.24)と加熱時間によって異なり, pw=0.6%の No.5 は No.4 の 4%(7.6/205.4=0.04)と大変低い数値を示した。

試験体	No.1	No.2	No.3	No.4	No.5	No.6		
実験値	195.9	78.0	46.7	205.4	7.6	<u> </u>		
[kN/mm]	(1.00)	(0.40)	(0.24)	《1.00》	《0.04》	0.9		
計算値 [kN/mm]	261.4	283.8	256.4	248.7	265.2	263.4		
実験値/ 計算値	0.75	0.27	0.18	0.83	0.03	0.03		

表-2 初期剛性の実験値と計算値

4.2 最大耐力

最大耐力を表-3 に示す。ただし、実験値のかっこ内 は、無加熱試験体に対する加熱試験体の耐力比を示す。 また、最大耐力の計算値は加熱前かつせん断破壊先行と し、以下の荒川 mean 式(3)によって算出した。

$$V_{u} = \left\{ \frac{0.068 p_{t}^{0.23} (F_{c} + 18)}{\frac{M}{Od} + 0.12} + 0.85 \sqrt{p_{w} \sigma_{wy}} + 0.1 \sigma_{o} \right\} bj \quad (3)$$

ここで, F_c :テストピースによるコンクリート圧縮強 度, p_t ;引張鉄筋比(%), pw:帯筋比, σ_{wy} :横補強筋降伏 強度, σ_o :柱の圧縮軸応力度(4N/mm²), j:7/8d である。

初期剛性同様,加熱を加えた No 2,No.3,No.5,No.6 の実験値は計算値を大きく下回り,加熱による耐力低 下が伺える。また,実験値における残存耐力比は pw=0.2% においては No.2 は No.1 の 68 % (175.1/258.9=0.68), No.3 は 58%(149.1/258.9=0.58)と加 熱時間によってやや異なり, pw=0.6%においては No.5 は No.4 の 33%(106.2/318.0=0.33)を示した。

表-3 最大耐力の実験値と計算値

試験体名	No.1	No.2	No.3	No.4	No.5	No.6
実験値	258.9	175.1	149.1	318.0	106.2	00.1
[kN]	(1.00)	(0.68)	(0.58)	《1.00》	《0.33》	90.1
計算値 [kN]	238.2	262.3	233.6	292.1	310.1	341.5
実験値/ 計算値	1.09	0.67	0.64	1.09	0.34	0.28

4.3 エネルギー吸収量

各試験体における,各変位段階繰り返し終了時の履歴ル ープエネルギー量を求め**表-4**, **図-7**に示す。

(1) pw=0.2%での比較

加熱時間のみが異なる pw=0.2% シリーズ No.1,No.2, No.3 を比較すると,加熱時間が長いほどエネルギー吸 収が小さくなるが, No.2 と No.3 に大きな差異はない。 (2) 加熱時間 2 時間での比較

帯筋比が異なる2時間加熱シリーズにおけるNo.3,No.5, No.6 について比較する。帯筋が多いNo.5 とNo.6 がNo.3 と比べて圧倒的にエネルギー吸収量が少ないが,これら 2 体は加熱中にコンクリートかぶりが剥落し(特に pw=1.0%のNo.6),断面欠損が著しく生じたことに起因 している可能性がある。

図-6 曲げせん断実験の荷重-変位関係

					•	
変形角	1/800	1/400	1/200	1/100	1/75	1/50
No.1	122	299	659	1919	2085	4700
No.2	60	223	438	1245	1437	2769
No.3	60	157	407	1182	1226	2334
No.4	127	325	833	2065	2974	5050
No.5	8	18	41	102	115	287
No 6	5	13	34	90	79	76

表-4 エネルギー吸収量(kN・mm)

5. 軸圧縮実験の結果

5.1 軸圧縮荷重一鉛直変位曲線

図ー8, **図ー9**に軸圧縮荷重-鉛直変位曲線を示す。

(1) pw=0.2%における比較 (図-8)

加熱はないものの明確なせん断ひび割れを生じた No.1の試験体が緩やかな包絡線を描いている。加熱あり の No.2,No.3 は軸圧縮荷重が大きいものの,最大に達す ると同時に大きな変位を生じ,脆性的な挙動を示した。

(2) 加熱時間 2 時間における比較 (図-9)

せん断拘束量の多い pw=0.6%以上の No.5,No.6 が粘り 強い挙動を示しているが, pw=0.2%である No.3 の方が最 大耐力や剛性が大きい値を示している。また, pw=0.6% と1.0%における差異はほとんど見受けられず, 軸圧縮荷 重一鉛直変位曲線においてほぼ同値を示した。

5.2 最大軸圧縮耐力

火災前の純圧縮耐力(計算値: $\sigma_B A_C + s \sigma_y A_s$)として 計算した計算値,実際に軸圧縮した実験値を**表-5**に示 す。また,最大計測荷重のかっこ内の値は,加力後の最 大耐力(実験値)と計算値との比を表す。加熱なしの試 験体は最大耐力に達していないので特に比較は行わない が,加熱ありの試験体はいずれも純圧縮耐力の25%前後 で帯筋の135°フックが外れ,圧壊して終局に至ってい る。

6. せん断耐力評価

6.1 鉄筋の残存強度評価

加熱後の鉄筋降伏点強度残存比の推定を,既存の文献 3)より得られた加熱冷却後の常温時強度から低減値を求 め,使用した鉄筋の平均降伏強度にその数値を乗じて加 熱冷却後の鉄筋降伏強度を求め,これを表-6に示す。

表--5 最大軸圧縮耐力

試験体	加熱前の コンクリート 圧縮強度 (実験値)	加熱前の 全圧耐力 (計算値) _(kN)	最大計測荷重 (実験値) (kN)	軸圧縮実験 における備考
No.1 (pw=0.2% 加熱なし)	28.9	4180.0	1770.0	加力機能力限界 強制終了
No.2	37.0	5158	1302	最大耐力
(pw=0.2% 1時間加熱)		(1.00)	(0.25)	0.3bD
No.3	27.3	3986	1625	最大耐力
(pw=0.2% 2時間加熱)		(1.00)	(0.41)	0.5bD
No.4 (pw=0.6% 加熱なし)	24.9	4212.0	1834.0	加力機能力限界 強制終了
No.5	30.2	4845	1227	最大耐力
(pw=0.6% 2時間加熱)		(1.00)	(0.25)	0.4bD
No.6	29.6	4773	1301	最大耐力
(pw=1.0% 2時間加熱)		(1.00)	(0.27)	0.4bD σ _B 時に圧壊

表ー6 加熱冷却後の鉄筋降伏強度(N/mm²)

試験体	帯筋量	加熱時間	加熱温度 [℃]		残存比	加熱前 降伏強度	加熱冷却後 降伏強度		
No.1	N. 1	0時間	主筋:D19	-	1.00	401	401		
NO. I			帯筋:D6	-	1.00	366	366		
No 2	No. 2 0. 2%	0.2% 1時間	主筋:D19	550	0.99	401	397		
NO. Z			帯筋:D6	625	0.96	366	351		
No 2	No 2	2時間	主筋:D19	788	0.87	401	349		
NO. 3			帯筋:D6	849	0.86	366	315		
No.4		0時間	主筋:D22	-	1.00	400	400		
NU. 4	0.61		帯筋:D10	-	1.00	344	344		
No 5	0.0%	2時間	主筋:D22	788	0.87	400	348		
NO. 5			帯筋:D10	849	0.86	344	296		
No 6	1 00/	.0% 2時間	主筋:D22	788	0.87	400	348		
NO. 0	1.0%		帯筋:D10	849	0 86	344	296		

6.2 コンクリートの残存強度評価

(1) 内部温度式による評価

断面の中心へ向かって同心円状に熱劣化すると仮定 し,加熱冷却後のコンクリート圧縮強度を計算する。

まず,内部温度 T(℃)の算定には濱田ら⁴⁾の報告から, 高強度コンクリートのデータを代用することにする。非 線形のデータではあるが、便宜上線形と考え以下の式(4) を用いた。

dは部材表面からの深さ(mm)を表す。

加熱 1 時間後
$$0 \le d \le 100$$
 T=945-7.45d
 $100 < d \le 175$ T=260-0.6d
加熱 2 時間後 $0 \le d \le 150$ T=1110-6.07d
 $150 < d \le 175$ T=290-0.6 d (4)

次に、コンクリート圧縮強度残存比 y の算出には、以下 に示す本田ら⁵の提案式 (5)を用いた。

$$20 \le T \le 400 \qquad y=1-0.00079(T-20) \\ 400 < T \le 600 \qquad y=0.7-0.002(T-400) \\ 600 < T \qquad y=0.3-0.00058(T-600) \end{cases}$$
(5)

上記で述べた式を用い,加熱冷却後のコンクリート残存 圧縮強度を推定する。

 ①柱断面を10mm角にコマ分けし、各セルの内部温度、 強度残存比を求める。概略図として図-11に示す。
②それぞれの残存強度比に加熱前のテストピース値とそれぞれの面積比を掛け合わせ、全断面の値を平均する。

実際の試験体において加熱後もかぶりが残存してた No.2,No.3 は 350mm×350mm,加熱中にかぶりが剥落し た No.5,No.6 は 270mm×270mmの断面としてコンクリー トの残存強度比を求めた。

(2) 軸圧縮実験による耐力評価

前述した 6.2(1) 内部温度式によるコンクリートの残存強度評価の妥当性を検証することを目的として、軸圧 縮実験によるRC部材の耐力値より主筋負担分を差し引 き、残存コンクリート圧縮強度を求める。

①実験値で得られた鉛直変位より歪み($\epsilon = \Delta M$)を算出。 ②、 $\epsilon = \epsilon = \epsilon$ より、主筋負担荷重、Fを算出。

③実験値である RC 部材負担の軸圧縮荷重_{RC}F より②で 求めた主筋負担荷重_xF 引く。(**図-12**)

 ④コンクリート負担荷重(_cF=_{RC}F - _sF)をコンクリート断 面積(=350×350-sA)で除し,残存コンクリート圧縮強度 を算出。(図-13)

(3) 内部温度式と軸圧縮実験値による評価値の比較

内部温度式,軸圧縮実験値によるそれぞれの評価値と 無加熱のコンクリートピース圧縮強度値を表-7 に示す。

内部温度式による値は、1時間加熱のNo.2と2時間加熱のNo.3を比較すると、加熱時間の長さに応じて耐力残存率が低下している。帯筋量の相違で比較すると、かぶり無しで評価したNo.5,No.6が同じ加熱時間のNo.3と比較して小さい。

2 時間加熱した試験体の軸圧縮実験による計算値と内 部温度式による計算値はほぼ同値であるので,内部温度 式の評価はおおよそ妥当だと推察される。ただし,1 時 間加熱の No.2 の試験体は軸圧縮実験と内部温度式の計 算値が大きく異なる。しかし,No.2 は No.3 と比較して 加熱時間は半分かつ無加熱時のコンクリートピース圧縮 強度値も約 10N/mm²高い。No.2 は軸圧縮実験の終局圧 壊時に両脇のコンクリートかぶりが大きく削げているこ とより,曲げせん断加力実験におけるせん断破壊の影響 が大きかったのが原因だと思われる。

表-7 コンクリート圧縮強度の評価比較(N/mm²)

試験体	テストビース値 加熱なし (実験値)	内部温度式 (計算値)	軸圧縮実験 (計算値)
No.1 (pw=0.2% 加熱なし)	28.9	-	9.4
No.2 (pw=0.2% 1時間加熱)	37	18.7 (かぶり有)	8.4
No.3 (pw=0.2% 2時間加熱)	27.3	8.0 (かぶり有)	11.1
No.4 (pw=0.6% 加熱なし)	24.9	-	6.5
No.5 (pw=0.6% 2時間加熱)	30.2	5.6 (かぶり無)	4.4
No.6 (pw=1.0% 2時間加熱)	29.6	5.5 (かぶり無)	5.0

6.3 加熱後の RC 部材の耐力評価

加熱後の RC 部材の耐力評価方法として,既往の式に 内部温度式による加熱後の材料推定値を代入する。既往 の式として,本稿では曲げ強度式(6) (N>0.4b・D・Fc の 時),せん断強度式として荒川 mean 式(3), 荒川 min 式(7), 終局強度型指針式(8)を用いた。これらによって求められ た値を表-8,図-14に示す。

$$M_{u} = 0.8a_{ts}\sigma_{y}D + 0.5ND\left(1 - \frac{N}{\sigma_{B}bD}\right)$$
(6)
$$V_{u} = \left\{\frac{0.053p_{t}^{0.23}(F_{c} + 18)}{M} + 0.85\sqrt{p_{w}\sigma_{wy}} + 0.1\sigma_{o}\right\}bj$$
(7)

$$\left(\begin{array}{c} \frac{M}{Qd} + 0.12 \\ Q_{u} = V_{t} + V_{a} = p_{w}\sigma_{wy}b_{j}\cos\theta + b\frac{D}{2}(1-\beta)\mu_{o}\sigma_{B}\tan\theta \\ \tan\theta = \frac{\sqrt{L^{2} + D^{2}} - L}{D}\cot\theta = \min\left\{2, \frac{j_{t}}{D\tan\theta}, \sqrt{\frac{\mu_{o}\sigma_{B}}{p_{w}\sigma_{wy}} - 1}\right\}\right\} (8)$$
$$\beta = \frac{p_{w}\sigma_{wy}(1 + \cot^{2}\theta)}{\mu_{o}\sigma_{B}} \quad \mu_{o} = 0.7 - \frac{\sigma_{B}}{200}$$

 $\mu_0 \sigma_B$

200

ただし、at:引張側主筋の総断面積、sov:主筋の降伏強 度(加熱ありの場合は表-6の値を用いる), σ_B:コンクリ ートの圧縮強度(加熱ありの場合は表-7内部温度式の値 を用いる), N:軸力(490kN), M/Qd:せん断スパン比(1以下 は1とし、3以上は3とする), B,D:No.1~No.4=350(mm), No.5~No.6=270(mm), d:有効性, jt,j:主筋中心間距離, L:試験体の内法高さとする。

評価方法として荒川式、特に指針式の値が実験値に近 い数値を示している。指針式での内訳値を考察してみる と、pw=0.2%である No.1~No.3 では無加熱の場合トラ ス・アーチ機構いずれもおおよそ等分であるが、加熱時 間が長くなると共にコンクリートの加熱劣化を内包して いるアーチ機構が小さくなる評価となっている。一方, pw=0.6%以上の No.4~No.6 の評価は大半をトラス機構で 占めていることが分かる。しかしながら、加熱ありで pw=0.6%以上の No.5~No.6 の評価方法は,実際の試験体 状況よりかぶりがないものと見なし、B×D=270(mm)× 270(mm)、同様にコンクリート圧縮強度も内部温度式に てかぶり無しとして断面評価を行っている。帯筋量が多 い場合,加熱後の残存耐力評価は大きくトラス機構負担 である結果となった。

7. まとめ

本報で得られた結論を以下に示す。

1) 初期剛性と最大耐力は加熱時間が長いほど値が小さく, 帯筋量の増加でその低下率は一層大きくなる。

2) 帯筋量の増加に伴い, 加熱後の損傷が大きくなる要因 として加熱時と加熱後における鉄筋の膨収縮が考えられ るが、本稿の実験結果のみでは不明点が多い。

3) 内部温度式と軸圧縮実験による残存材料強度評価はほ ぼ同値であったため,内部温度式による残存材料強度評 価は妥当と推察できる。

4) 特に終局強度型指針式による評価が実験値と適合性が

良いが、断面寸法設定において、柱断面の加熱後のかぶ りの有無を加味する必要ある。

謝辞

本研究における試験体の材料を東京鉄鋼株式会社様よ りご提供頂いたことに感謝致します。

表-8 評価式による耐力評価と実験値(kN)

評価方法	試験体名	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
	pw	0. 2%			0.6%		1.0%
	加熱時間	加熱なし	1時間	2時間	加熱なし	2時間	2時間
実懸	実験値		175	149	318	106	96
曲げ終	曲げ終局強度		311	242	467	197	194
荒川mean式		238	207	175	284	172	195
荒川n	荒川min式		183	158	258	154	178
	全体	251	199	129	405	128	110
靱性指針式	アーチ機構	124	77	26	40	0	9
	トラス機構	128	123	103	365	128	102

参考文献

1) 高木仁之, 白石一郎: 加熱を受けた鉄筋コンクリート 柱の強度・変形性能の劣化に関する研究, JCI 年次論文 集, vol.30, No.3, pp.121-126, 2008

2) 高木仁之, 白石一郎: 火熱を受けた RC 柱の耐震性能 と炭素繊維シート補強の効果, JCI 年次論文集, vol.31, No.2, pp.211-216, 2009

3) 日本建築学会:構造材料の耐火性ガイドブック,日本 建築学会, p123, 2004

4) 濱田真, 菊田繁美ほか: 超高強度材料を用いた鉄筋コ ンクリート柱の耐火性に関する研究:(その 10 Fc=120N/mm²級コンクリート柱の載荷加熱実験結果),日 本建築学会大会学術講演会梗概集(近畿), p.77-78, 2005.7 5) 本田義博, 大岡督尚, 藤巻敏之: 高強度コンクリート の耐火性に関する実験的研究(その1定常温度の一軸試 験),日本建築学会大会学術講演梗概集(近畿), pp.23-24, 1996.9