論文 繰り返し二軸曲げを受ける中間補強筋付き鉄筋コンクリート柱の 耐荷特性に関する実験的研究

鈴木 森晶*1·水野 英二*2

要旨:本研究では、「横拘束筋間隔」、「中間補強筋の配置形状」および「載荷経路」を水準とした鉄筋コンクリート(RC)柱の二方向繰り返し曲げ実験結果を基に、軸方向筋の座屈性状およびコンクリートの劣化が中間補強筋付き RC 柱の耐荷性能に与える影響について検証した。これまでの RC 柱ならびにSFRC 柱の耐荷特性も含めて検討した結果、1)斜め載荷では、横補強筋間隔に関係なく中間補強筋付き RC 柱および SFRC 柱は大変位領域まで高い耐力を発揮する、2)矩形載荷では、横拘束筋間隔が短い場合には、中間補強筋付き RC 柱が高い耐力を発揮することができる、など多くの知見を得た。 キーワード:RC 柱、中間補強筋、二方向繰り返し曲げ、耐荷特性、横拘束筋間隔、軸方向筋の座屈

1. はじめに

一般に,鉄筋コンクリート (RC) 柱の最大耐力以降の 領域(以下,ポストピーク領域)での急激な耐力低下を 抑制する一対策として,材料的ならびに構造的な観点か ら柱基部の塑性ヒンジ化領域での,1)かぶりコンクリー トの剥落を抑え,2)軸方向筋の座屈発生を遅延させるこ とにより,エネルギー吸収能の高い RC 柱を採用するこ とが考えられる^{1),2)}。

既往の研究として,橋脚の塑性ヒンジ化領域の高強 度・高性能化に関する研究も行われている^(例えば,3)~5)。ま た,筆者らは,一軸方向のみならず多方向から繰り返し 曲げ力を受ける RC 柱のヒンジ化領域での内部コンクリ ートの強度劣化特性ならびに軸方向筋の座屈発生前後の 耐荷特性に関する研究^{6)~8)}を行ってきている。とくに, 鋼繊維補強コンクリート (SFRC) 柱の耐荷特性ならびに 軸方向筋の座屈に関する研究²⁾では,横拘束筋間隔が比 較的長い場合には SFRC 柱の採用が耐震性能向上には有 効であることが分かった。

本研究では,既往の研究^{2).6)~8)}で扱った「横拘束筋間 隔」および「載荷経路」に加えて,「中間補強筋の配置形 状」も水準とし,一定軸力下での二軸繰り返し曲げ載荷 実験を実施した。「中間補強筋の配置形状」として,2種 類の配置形状(十字型および X 字型)を採用し,「載荷 経路」としては,斜め載荷および矩形載荷²⁾を採用した。 これまで筆者らが実施した,RC 柱および SFRC 柱の二 軸曲げ載荷実験結果²⁾と本実験結果とを比較することに より,中間補強筋付き鉄筋コンクリート(RC) 柱のポス トピーク領域での耐荷特性について検証した。

2. 実験供試体および材料定数

本研究で使用した供試体の形状ならびに配筋(軸方向 筋および横拘束筋)の一例を図-1に示す。実験には,

*1 愛知工業大学 工学部都市環境学科土木工学専攻 教授 博士(工学)(正会員)

断面 200×200 mm, 柱有効高さ 1000 mm, せん断スパン 比 5 を有する柱供試体を用いた。供試体は曲げ破壊先行 型となるように, 軸方向筋には D10 (SD295A) を 8 本, 横拘束筋には D6 (SD295A) を柱基部からおよそ 3D 区 間 (D:柱幅) まで間隔 s = 65, 90, 105 および 120 mm (4 水準) でそれぞれ配筋した。本供試体は, 軸方向鉄筋比 1.3%, 横拘束鉄筋体積比 1.10%~0.60%の範囲にある実 大 RC 柱をモデル化したものである。これに加え, 中間 補強筋として, D6 (SD295A) を横拘束筋間の中間に配 筋した。配置形状として, 中央部の軸方向筋を繋いだ十 字型ならびに隅角部の軸方向筋を繋いだX字型を設定し た (図-2 (a), (b) 参照)。なお, 図-2 (c) に軸方向 筋番号を示す。打設コンクリートには, 設計基準強度 f_{ck} = 60 MPa を有する普通コンクリートを用いた。本実験で は, 横拘束筋間隔 (4 種類), 中間補強筋配置形状 (2 種

^{*2} 中部大学 工学部都市建設工学科 教授 Ph.D. (正会員)

載荷経路	横 東間 s [mm]	コンクリート 設計基準強度 60 [MPa]			軸方向筋 D10 (SD295A)				横拘束筋 D6 (SD295A)				載荷軸力 [kN]		
		RC 補強筋 なし	SF RC	RC 補強筋 あり	降伏強度 [MPa]		引張強度 [MPa]		降伏強度 [MPa]		引張強度 [MPa]		RC 補強筋 なし	SF RC	RC 補強 あり
					RC SFRC	RC 補強筋 あり	RC SFRC	RC 補強筋 あり	RC SFRC	RC 補強筋 あり	RC SFRC	RC 補強筋 あり			
斜め載荷	65 90 105 120	62.6 64.5 62.6	64.0 61.8 64.0	55.1 61.3 62.6 62.3	342	403	519	608	373	426	583	583	136	130 131 134	118 131 133
矩形載荷	65 90 105 120	61.6 65.3 61.6	61.7 63.8 61.7	55.1 61.3 62.6 62.5									131 138 131	132 136 132	118 131 133

表-1 材料定数および軸カー覧

類)および載荷経路(後述する,斜め載荷と矩形載荷) を水準として,中間補強筋付き供試体計16体を作製した。 本実験で使用した鉄筋およびコンクリートの材料定数な どを表-1に示す。なお,表には,文献2)のRC柱およ びSFRC柱の材料定数などの情報も併せて示してある。

3. 載荷実験

3.1 載荷方法

RC柱(図-1)を鋼製冶具に完全固定の条件となるように固定し,鉛直ジャッキにより軸力を柱頂部に作用させると同時に,写真-1に示す二方向載荷装置を用いて二方向(X方向およびY方向)からの水平変位を柱頂部に与えることにより,繰り返し二軸曲げ載荷実験を実施した。鉛直軸力の大きさは累加軸耐力の5%(118 kN~133 kNの範囲)とし,次節の載荷経路に基づいて変位制御により水平荷重を作用させた。

3.2 載荷経路

図-3に示す,2種類の載荷経路として,1)45°斜め 載荷,2)矩形(正方形)載荷^{2),8)}を設定した。斜め載荷 (図-3 (a))では,X方向およびY方向に同時に同一 変位を<0→+4δ_y→-4δ_y→+8δ_y→-8δ_y→+8 $\delta_y \rightarrow -16\delta_y \rightarrow +16\delta_y \rightarrow -16\delta_y > o$ 順に柱頂部に与 えた。また,矩形載荷(図-3 (b))においては,X方向 およびY方向に交互に変位を<0→+4δ_y→-4δ_y→ +8δ_y→-8δ_y→+8δ_y→-16δ_y→+16δ_y→0>の 順に柱頂部に与えた。ここで,図中の「 δ_y 」は初期載荷 での引張側軸方向筋の初期降伏時における柱頭での水平 変位δ(ここでは,軸方向筋のひずみが2,000 μ に達し た時の降伏水平変位)を意味する。本実験では,文献2) にある RC 柱および SFRC 柱の実験結果との比較を通し て耐荷特性を検討するため,便宜上,斜め載荷では δ_y = 5.35 mm,矩形載荷では δ_y = 6.0 mmを採用した。

4. 中間補強筋付き RC 柱の実験結果および考察

4.1 繰り返し変形特性

(1) 斜め載荷

二種類の中間補強筋付き RC 柱の変形挙動を比較する

 F_{13} F_{13} F_{1

> 16 (×δ_v)

(b) 矩形載荷

ため,一例として,最短,中間および最長の横補強筋間 隔 s = 65 mm, 90 mm および 120 mm を有する RC 柱に対 する斜め載荷実験から得た,水平荷重-水平変位関係(Y 方向)を図-4(a)~(c)に示す。X方向の水平荷重-水平変位関係は、Y方向のそれと概ね一致していた。図 中,実線は十字型中間補強筋付き RC 柱(以下,十字型 RC 柱)の実験結果,破線は X 字型中間補強筋付き RC 柱(以下,X字型RC柱)の実験結果を示す。十字型RC 柱(4体)および X 字型 RC 柱(4体)のコンクリート 圧縮強度は、55 MPa~63 MPa の範囲にあり多少の強度 差はある。しかし、全ての RC 柱の最大耐力は 23 kN~ 24 kN とほぼ同じで, 文献 2) にて報告した中間補強筋な しの RC 柱 (以下, RC 柱) のそれら (例えば, s = 65 mm: 20.4 kN, s = 120 mm: 22.4 kN) よりも高い耐力を示す。 これは、本実験で使用した軸方向筋の降伏強度が多少高 いことが原因と考えられる(表-1を参照)。

図-3 載荷経路

(a) 斜め載荷

「横拘束筋間隔」および「中間補強筋の配置形状」の 違いによる主な特徴として,以下のことが挙げられる。

- i) これまでの RC 柱に関する研究<sup>2).0⁻⁸⁾から分かって
 いる「横拘束筋間隔が大きくなるに従い,各除荷お よび再載荷での耐力低下が大きくなる」傾向が十字
 型 RC 柱および X 字型 RC 柱においても+8δ_y以降の 載荷で確認できる。ただし,X 字型 RC 柱では,+
 字型 RC 柱よりも比較的高い耐力を示した。
 </sup>
- ii) X 字型 RC 柱では、+8δy → -8δyまで中間補強筋の拘束効果によりコンクリート強度の繰り返し劣化およびコンクリートの剥落が抑制され、軸方向筋の座屈挙動が抑制できたことを実験から確認した。

図-5 水平荷重-水平変位関係(矩形載荷:X方向)

一方,十字型 RC 柱では,横拘束筋間隔 s = 65 mm の場合を除いて, $-4\delta_y \rightarrow +8\delta_y$ の載荷区間で座屈 の発生が確認された。

- iii) 十字型 RC 柱では,横拘束筋間隔 s = 120 mm の場合 を除いて, +8 δ_y → -16 δ_yおよび -16 δ_y → +16 δ_y に至る除荷・再載荷経路上にて,図-2 (c) に示す 隅角部の軸方向筋 3 および 7 が破断した。
- iv) X 字型 RC 柱では、横拘束筋間隔 s = 90 mm の場合 を除いて、上記iii) と同様な載荷経路上にて、主に 隅角部の軸方向筋 3 および 7 が破断した。

(2) 矩形載荷

ここでは,斜め載荷と同様,横拘束筋間隔 s = 65 mm, 90 mm および 120 mm を有する RC 柱に対する矩形載荷 実験から得た,水平荷重-水平変位関係(X 方向)を図 -5 (a) ~ (c) に示す。

コンクリート圧縮強度に差はあるものの,X 方向の初 期載荷 $(0 \rightarrow +4\delta_y)$ にて、中間補強筋付き RC 柱の最 大耐力は同程度 $(28 \text{ kN} \sim 29 \text{ kN})$ となった。ちなみに、 RC 柱の二軸曲げ矩形載荷実験²⁾の最大耐力 28 kN とほぼ 一致した結果となった。中間補強筋付き RC 柱の変形特 性に関する主な特徴として、以下のことが挙げられる。

- i) (1) 斜め載荷の特徴 i) と同様の傾向が十字型 RC 柱 ならびに X 字型 RC 柱においても+8 $\delta_y \rightarrow -16 \delta_y$ (X 方向) 以降の載荷で確認できる。
- ii) 図-5 に示される、マイナス方向に向かう変形曲線 はX方向変位ゼロの点で変位を保持したままマイナ スY方向へ載荷されるため、一旦、X方向変位ゼロ の点で鉛直に耐力が低下する。この後、耐力の上昇

を開始するが,その上昇の度合いは繰り返し載荷数 に従い低下する。その中でも,両中間補強筋付き RC 柱とも, s = 65 mm の時に一番高い耐力を呈した。

- iii) 十字型 RC 柱では、早い段階の載荷経路上、例えば、 -4 $\delta_y \rightarrow +8\delta_y$ (Y 方向) に至る載荷区間にて、軸 方向筋 3 に座屈が発生した。その後、軸方向筋 7 に 座屈が発生し、引き続き他の軸方向筋も座屈するこ とを確認した。一方、X 字型 RC 柱では、座屈の発 生は遅く、-8 $\delta_y \rightarrow +8\delta_y$ (Y 方向) に至る載荷区 間にて軸方向筋 3 が最初に座屈した。
- iv) 十字型 RC 柱では、早い段階で座屈が発生したが、 軸方向筋の破断は横補強筋間隔 s = 65 mm および s = 90 mm の RC 柱で生じた。一方、X 字型 RC 柱では、 座屈の発生は抑制されたが、s = 65 mm~120 mm の 全ての RC 柱で軸方向筋の破断が確認された。

4.2 除荷および再載荷点を基準とした耐荷特性の比較

本節では、中間補強筋付き RC 柱のポストピーク領域 での耐荷特性を RC 柱ならびに SFRC 柱の耐荷特性²⁾と 比較するため、水平荷重-水平変位関係(図-4 および 図-5)を構成する除荷・再載荷曲線の開始点を基準とし て整理した「耐力-変位曲線」の考え方を用いる⁷⁾。

「耐力-変位曲線」は、図-6の概念図に示すような 3種類の曲線、すなわち、1)図中の限界曲線(RC柱の P-δ効果による曲線)に漸近するように、耐力が上昇・ 下降する挙動(曲線A)、2)一旦、耐力が一定または減 少した後に、再度上昇し、限界曲線と同様な勾配で下降 する挙動(曲線B)、3)軸方向筋の座屈とコンクリート の強度劣化とにより塑性ヒンジ化した挙動(限界曲線と

同様な勾配を有する曲線 C) に分類できる。以下に、それら「耐力-変位曲線」を用いて、かぶりコンクリートの剥離・軸方向筋の座屈が顕著に生ずる載荷区間(+8 δ_y) → -8 δ_y) 以降の RC 柱 (RC 柱、SFRC 柱および中間補 強筋付き RC 柱) の耐荷特性の比較・検討を行う。

(1) 斜め載荷下での耐荷特性

- 例として, 4 種類の RC 柱の斜め載荷下での耐力-変位曲線をそれぞれ横拘束筋間隔(s = 65 mm および s =120 mm)ごとに比較した結果を図-7 (a) および (b)に示す。ここで,耐力および変位は,Xおよび Y 方向成分を合成した量である。なお,図中の数字((1)~(5))の奇数は除荷曲線,偶数は再載荷曲線を意味する。例えば,図-7 (a)の s = 65 mm : X 字型 RC 柱の耐力曲線(一 $点鎖線)は,+8<math>\delta_y \rightarrow -16\delta_y$ (曲線(3))までは,図-6 に示す「耐力-変位曲線」の概念図にある限界曲線に漸 近するような曲線 A の形状を呈するのに対し,-16 $\delta_y \rightarrow$ +16 δ_y の載荷区間(曲線(4))以降では曲線 B を呈する。 この載荷区間にて,軸方向筋 2 および 3 で座屈が,軸方 向筋 7 にて破断が生じている。 4 種類の RC 柱に対するポストピーク領域での耐荷特 性(s = 90 mm および s = 105 mm の場合も含めて)をま とめると,以下のようである。

- i)各 RC 柱の耐力曲線の変遷は、横拘束筋間隔および 載荷経路によって異なるが、s = 65 mm および s = 90 mm の場合において X 字型 RC 柱が最も高い耐力 を示した。s = 105 mm および s = 120 mm の場合にお いても X 字型 RC 柱は高い耐力を呈するが、-16 δ_y → +16 δ_y の載荷区間以降では、SFRC 柱の方が最も 高い耐力を呈する。
- ii)斜め載荷では、横拘束筋間隔に関係なく、X 字型 RC 柱および SFRC 柱が高い耐力を示した。
- iii)+16δ_y→-16δ_yの載荷区間を通して,4種類全ての RC 柱にてコンクリートの強度劣化が生じ,最終的 に塑性ヒンジ化に移行する曲線Cとなる。

(2) 矩形載荷下での耐荷特性

図-8 に示すように,矩形載荷の1サイクルは4種類 の載荷経路(1)経路A(P3→P4→P5→P6),(2)経路B (P7→P8→P1→P2),(3)経路C(P4→P5)および(4) 経路D(P8→P1)の組み合わせである²⁾。

以下では、斜め載荷と等価である、経路Aの耐荷特性 (X方向)および経路Bの耐荷特性(Y方向)を比較す る。一例として、4種類のRC柱の耐荷特性(経路Aお よび経路B)を横拘束筋間隔(s=65 mmおよびs=120 mm)ごとに比較した結果を図-9(a)および(b)に示 す。なお、斜め載荷下のRC柱の耐力曲線を比較のため に図中に参考曲線(太い実線)として載せてある。この 参考曲線は、図-7に示す耐力曲線のXまたはY方向成 分である。4種類のRC柱に対する耐荷特性(s=90 mm および105 mmの場合も含む)を以下にまとめる。

図-8 矩形載荷経路の構成とそれの説明

- i)4 種類の RC 柱とも矩形載荷下での耐力は,斜め載 荷の中で最も低い耐力を呈した RC 柱のそれよりも 概ね低い。これは,経路 A および経路 B の始点に到 達するまでに,矩形載荷では面外方向からの損傷を 受けるため,経路 A および経路 B の耐力曲線の初期 剛性は斜め載荷の耐力曲線のそれよりも小さく,さ らに耐力低下後の耐力もより小さくなる。
- ii) 矩形載荷では、横拘束筋間隔 s = 65 mm および s = 90 mm で X 字型 RC 柱が高い耐力を示した。s = 105 mm および s = 120 mm においては、SFRC 柱が高い耐力 を呈するが、-16 $\delta_y \rightarrow +16 \delta_y$ の載荷以降は、十字 型 RC 柱が高い耐力を呈する。これは、軸方向筋の 破断が生じなかったことが理由である。

4.3 破壊性状

斜め載荷および矩形載荷の下, コンクリート剥落・軸 方向筋の座屈などにより破壊性状が異なる-16δ_y時点で の4種類のRC柱(一例として, s = 120 mm)の破壊状 況(+X方向からの状況)を写真-2および写真-3に示 す。なお,写真中の1,2および3は軸方向筋番号(図-2(c))を示す。以下,破壊性状に関する考察を述べる。 1)文献 2)と同様,中間補強筋付き RC 柱においても, 斜め載荷では、コンクリートの破壊領域は、載荷方 向に沿った隅角部に集中して生じ(写真-2(c)お よび(d))、矩形載荷では、載荷が X 方向および Y 方向に交互に行われるため 4 面のかぶりコンクリー トが剥落した(写真-3(c)および(d))。

- 2) 斜め載荷および矩形載荷とも、SFRC 柱のコンクリートの破壊域は基部に集中している(写真-2(b)および写真-3(b))が、中間補強筋付き RC 柱では、RC 柱と同様、基部から 130 mm 程度の領域に広がっていた(写真-2(c),(d)および写真-3(c),(d))。
- 3) 中間補強筋付き RC 柱のコンクリート破壊領域は, RC 柱のそれよりも大きくはなく,軸方向筋も多くは 露出しなかった。
- 4) RC 柱、中間補強筋付き RC 柱では、矩形載荷の方が コアコンクリートの損傷が大きいが、SFRC 柱では、 斜め載荷も矩形載荷も一部の剥落で留まっている。 また、4 種類の RC 柱とも、かぶりコンクリートの剥 落領域は横拘束筋間隔の影響を受けなかった。
- 5) 変位-16δ_y時点の4種類のRC柱(s = 120 mm)の軸 方向筋の座屈および破断状況として,斜め載荷下で は,中間補強筋付き RC 柱ならびに SFRC 柱では隅角 部の軸方向筋3および7にのみ座屈が生じたが,RC 柱では5本の軸方向筋が座屈した。一方,矩形載荷 下では,SFRC 柱を除く3種類のRC 柱で多くの軸方 向筋が座屈したが,とりわけRC 柱では殆どの軸方向 筋で座屈が生じた。
- 6) 軸方向筋の座屈に関しては、SFRC 柱はかぶりコンク リートの剥落が基部に集中するため、また中間補強 筋付き RC 柱では中間補強筋が軸方向筋を拘束する

5. まとめ

- 斜め載荷下では、X 字型 RC 柱および SFRC 柱とも、 横拘束筋間隔に関係なく、横拘束筋を拘束すること ができ、RC 柱と比べて大変位領域まで高い耐力を保 有することができる RC 柱となりうる。
- 2) 矩形載荷下では、横拘束筋間隔が短い(s = 65 mm) 場合には+字型および X 字型中間補強筋が、また横拘 束筋間隔が長い(s = 120 mm)場合には SFC が横拘束 筋を拘束するため、高い耐力を保有することができる。 横拘束筋間隔が長い場合には、十字型 RC 柱では早い 段階で座屈が発生し、X 字型 RC 柱では大変位領域に て軸方向筋が破断し、耐力が低下する。
- 3) 矩形載荷下の4種類のRC柱の耐力曲線は,全体的に 斜め載荷のそれと比べて低い傾向を示した。
- 4)中間補強筋の効果により、補強筋付き RC 柱の破壊状況は、RC 柱のそれと比べて破壊領域が小さくなる。 また、X 字型中間補強筋は、十字型と比べて、軸方向筋に対して座屈抑制の効果が大きいことが分かった。
- 5) +16 $\delta_y \rightarrow -16$ (0) δ_y の最終載荷までに,全てのRC 柱にてコンクリートの強度劣化が生じ塑性ヒンジ化 するため,これを抑制する対策が今後の課題である。

謝辞:本研究を遂行するにあたり,平成22-24年度文部 科学省科学研究費補助金(基盤研究(C)22560488代表: 水野英二),中部大学特別研究費A(代表:水野英二)お よび愛知工業大学耐震実験センターの研究助成を得た。 また,愛知工業大学の大学院生:水野憲司君,学部生: 黒田亮君および林由晴君には,実験遂行にて多大な協力 をいただいた。ここに記して,謝意を表す。

参考文献:

- 日本コンクリート工学協会編:コンクリート構造物の ポストピーク挙動評価と設計への応用,2003.
- 2) 鈴木森晶,水野英二:載荷履歴の異なる二方向曲げ力 を受ける鋼繊維補強コンクリート柱の変形性状に関 する研究,土木学会論文集 A2(応用力学), Vol.68, No. 2 (応用力学論文集 Vol.15), I_393-I_402, 2012.9.
- 3) 木村秀樹ら:鋼繊維を混入した高強度コンクリート RC 柱に関する実験的研究,コンクリート工学年次論 文報告集, Vol.25, No.2, pp.235 – 240, 2003.7.
- 古武謙二,小川晃,樋口義弘,前之園司:中間帯鉄筋の定着体がRC柱の変形性能に及ぼす影響,コンクリート工学年次論文集,Vol.31, No.2, pp.139 144, 2009.7.
- 5) 山野辺慎一ら: 超高強度繊維補強コンクリートを用いた RC 橋脚の二方向地震動に対する耐震性能, 土木学 会論文集 A, Vol.66, No.3, pp.435-450, 2010.7.
- 6) 鈴木森晶・水野英二:繰り返し力を受ける RC 柱の破 壊領域での主鉄筋座屈性状に関する研究, コンクリー ト工学年次論文集, Vol.32, No.2, pp.151 - 156, 2010.7.
- 7) 亀田好洋・鈴木森晶・水野英二:ポストピーク領域に おける鉄筋コンクリート柱の繰り返し耐荷特性に関 する実験的研究,コンクリート工学年次論文集, Vol.33, No.2, pp.199-204, 2011.7.
- 8) 鈴木森晶・水野英二:二方向繰り返し力を受ける RC 柱の載荷履歴が変形性状に及ぼす影響に関する研究, 土木学会論文集 A2(応用力学),Vol. 67,No.2(応用力 学論文集 Vol.14),I_313-I_320, 2011.9.