論文 材端回転ばねにより RC 造柱梁接合部の変形を表す骨組解析モデル

高山 慧*1・塩原 等*2・楠原 文雄*3

要旨:鉄筋コンクリート造骨組の柱梁接合部の変形を,材端弾塑性ばねモデルの回転ばねで表す簡易な部材 モデルについて,従来の慣例的な部材モデルと比較検討した結果を報告する。提案した復元力特性と履歴曲 線によるモデルでは,柱梁接合部の部分架構の最大強度などを適切に評価できる。また,鉄筋コンクリート 造建物の全体架構に適用したときに,履歴減衰の低下や接合部破壊の現象を予測することができる。 キーワード:鉄筋コンクリート,柱梁接合部,接合部終局モーメント,材端弾塑性ばねモデル,復元力特性

1. はじめに

鉄筋コンクリート造建物の構造設計において,一般的 には柱梁接合部が破壊しないことを前提として,柱梁に 剛域を設けて剛接骨組の解析が行われている。しかし, せん断余裕度が大きい柱梁接合部でも梁ヒンジ形成に先 行して接合部破壊が起こる場合があり,架構の保有水平 耐力,履歴エネルギー吸収能を危険側に評価する恐れが あること,接合部破壊を避けるためには柱の曲げ強度の 梁の曲げ強度に対する比を1から十分に遠ざける必要が あることが指摘されている¹⁾。だが,柱梁接合部に損傷 が全く生じないように柱梁曲げ強度比を十分に大きくす ることは実設計では現実的でない場合がある。そこで, 架構の一部で接合部破壊が生じても保有水平耐力の算定 や地震応答解析が正しくできるように,柱梁接合部の挙 動を適切に評価できる数値解析モデルを考案することは 有用である。

接合部の破壊機構を表す数値解析モデルとしてせん 断パネル要素などが考案されているが,これは接合部が せん断破壊する場合のモデルであり,前述のような本研 究で対象とする破壊機構を表すモデルとしては適切でな い。適切なモデルとしては接合部マクロエレメント²な どが考案されているが,モデルが複雑で計算量が多いた め実務での利用は難しい。他方,柱梁接合部の簡易な数 値解析モデルとして,部材端に曲げばねを2つ直列に設け る方法³⁾(以下,「直列ばねモデル)と呼ぶ)が考案され ているが,回転ばねの復元力特性の具体的な決め方は十 分に検討されていない。

本研究では,直列ばねモデルにおける回転ばねの復元 力特性と履歴モデルを提案し,接合部破壊を簡易に表現 することのできる骨組解析手法を構築する。柱梁接合部 をモデル化しない慣用的な解析手法との比較を通して, 提案手法の有用性を検証し,モデルの性質を分析する。

2. 部材モデル

2.1 直列ばねモデルの概要

図 - 1に直列ばねモデルを示す。これは,骨組解析に 一般的に用いられている材端弾塑性ばねモデル(以下, 便宜上「単一ばねモデル」と呼ぶ)に,回転ばねを1つ直 列に追加したものである。

一方の回転ばね(部材端ばね)は部材の曲げ変形を表 すもので,武田モデル⁴によって復元力特性を与える。 他方の回転ばね(接合部ばね)は接合部の変形をフェイ ス位置に集約して表すもので,図-2に示すスリップ性 状を持つトリリニア型の履歴モデルによって復元力特性 を与える。この履歴モデルは,柱梁曲げ強度比が1に近い 柱梁接合部の部分架構実験⁵⁾⁶より得られた履歴曲線を 基に考案したものである。単一ばねモデルでは,武田モ デルによる回転ばねにすべての変形挙動を集約させるの に対して,直列ばねモデルは,部材端ばねと接合部ばね の2つに変形を振り分けたものとなっている。

- *1 東京大学大学院 工学系研究科建築学専攻 大学院生 (学生会員)
- *2 東京大学大学院 工学系研究科建築学専攻 教授 工博 (正会員)
- *3 東京大学大学院 工学系研究科建築学専攻 助教 (正会員)

直列ばねモデルでは,直列回路の性質により,両者に 加わる荷重は等しく,変形量は異なるため,ばねの強度 に異なる値を与えることによって,どちらかのばねに変 形が集中する。部材端ばねに変形が集中すれば梁破壊や 柱破壊,接合部ばねに変形が集中すれば接合部破壊を表 現することができる。このような複合的な復元力特性は, 単一ばねモデルにおいても再現することは可能である。 しかし,破壊の形式や梁・柱と接合部の強度の比などに より,様々なケースについて特性を定める必要がある。 2.2 骨格曲線

部材端ばね,接合部ばねの骨格曲線には,高山らの提 案した骨格曲線^つを用いる。図-3にその概略を示す。

まず部材端ばねについては,第一折れ点を曲げひび割 れ時,第二折れ点を曲げ終局時と定義する(簡単のため, 曲げ降伏点は第一折れ点と第二折れ点を結ぶ線分上にあ るものとする)。略算式⁸により曲げひび割れモーメン ト*M_c*,を推定し,弾性理論に基づき弾性剛性*K_e*を算定する。 降伏モーメント*M_y*,終局モーメント*M_u*は,平面保持を仮 定した断面解析により算定する。降伏時の回転角*θ*,は, 断面解析を基に定めた降伏時の曲率分布を部材長の方向 に積分して求める。曲率分布は,逆対称曲げを仮定し, 端部,曲げひび割れ開始点,スパン中央の曲率を求めて それらの間を線形補間した。この方法により,部材端ば ねは部材端の曲げ変形のみを表現することになる。

次に接合部ばねについては,第一折れ点を接合部内主 筋の初降伏時(=「接合部降伏時」),第二折れ点を接 合部最大耐力時(=「接合部終局時」)と定義する。楠 原ら^{9,10)}の算定式より接合部終局モーメント*M_{ju}*を求め る。接合部降伏モーメント*M_{jy}*は算定方法には別途検討が 必要だが,ここでは*M_{ju}*の85%とする。変形については, 接合部の変形を定める方法が確立されておらず,また, 一般的な単一ばねモデルと比較する際に,強度と変形の 両者が異なるとモデル化の違いによる影響を調べること が難しくなる。そこで,終局時の2つのばねの変形の和が 一般的な単一ばねモデルにおける第二折れ点の変形と等 しくなるように,接合部ばねの終局時の変形を次式によ って定めることにする。

$$\theta_{u1} + \theta_{ju} = \theta_{u2} \tag{1}$$

ここで, θ_{u1} は部材端ばねの骨格曲線の第二折れ点におけ る変形量, θ_{u2} は菅野式¹¹⁾で曲げ降伏点を算定した場合 の曲げ終局時の変形量, θ_{ju} は接合部終局時の変形量であ る。式(1)は,部材端終局時の曲げ変形と接合部終局時の 変形の和が, 菅野式によって求められる部材端終局時の 変形に等しいという仮定を表している。

 θ を強度Mと剛性 α ・Kで表わして式を変形すると,

$$\alpha_{ju} \cdot K_{je} = \frac{M_{ju}}{M_{u}} \cdot \frac{\alpha_{u1} \cdot \alpha_{u2}}{\alpha_{u1} - \alpha_{u2}} \cdot K_{e}$$
(2)

ここに, M_u は曲げ終局モーメント, M_{ju} は接合部終局モ ーメント, α_{u1} は部材端ばねの剛性低下率, α_{u2} は菅野式 による剛性低下率, α_{ju} は接合部ばねの剛性低下率, K_e は 部材端ばねの弾性剛性, K_e は接合部ばねの弾性剛性。

 $M_{ju}/M_u > 1$ の場合,梁に変形が集中し接合部はあまり 塑性化しないと考え、剛性低下率 $\alpha_{ju} = 1$ とおく。このような対応関係から, $\alpha_{ju} K_{ie}$ を次のように定義する。

$$\alpha_{ju} = \frac{M_{ju}}{M_{u}} \le 1, \quad K_{je} = \frac{\alpha_{u1} \cdot \alpha_{u2}}{\alpha_{u1} - \alpha_{u2}} \cdot K_{e}$$
(3)

2.3 部材モデルの検証

(1) 解析対象と解析方法

楠原ら^{5),6}の行った柱梁接合部の静的繰返し載荷実験 (十字形 26 体,ト形 24 体)について,試験体を図-4 のように直列ばねモデルによってモデル化し,静的増分 解析を行う。試験体はすべて柱,梁の反曲点位置で切り 出した 1/3 スケールの平面部分架構である。十字形では 通し配筋とし,ト形では梁主筋を折り曲げないし定着板 で定着している。主なパラメータは引張主筋量,接合部 アスペクト比,コンクリート強度,主筋間距離比,柱梁 曲げ強度比,横補強筋比,定着長および定着方法である。

載荷履歴は実験と同じとした。なお,剛域の長さは接 合部の中心からフェイス位置までの長さと同じとした。 また,回転ばねの第三勾配,接合部ばねのスリップ勾配 は,その回転ばねの初期剛性に対して 1/200 とした。

(2) 解析結果

図 - 5に層せん断力 層間変形角関係の例を示す。(a) ~ (c)が十字形接合部,(d)~(e)がト形接合部であり,左2 列は接合部パネルが正方形,右1列は長方形である。実験 では,ほぼすべての試験体で接合部の破壊が著しく,履 歴曲線はスリップ型となるが,解析でも,B01をはじめ 多くの試験体で,最大耐力,剛性,ピンチング性状を適 切に評価できた。しかし,必ずしも全試験体で実験結果 と合致するわけではなく,B04のように,接合部の強度 が柱・梁の強度よりも大きくなり,実験で見られるよう なピンチング性状を示さないものが存在した(柱梁曲げ 強度比が1.5~19の十字形接合部で3体,梁端が折り曲げ 定着であるト形接合部のOシリーズで4体)。また,N01 のように, 接合部強度の計算結果が実験結果よりも小さ くなり,最大強度を大幅に過小評価する場合もあった(主 筋間距離が短い十字形接合部で2体柱せいが梁せいの2 倍であるト形接合部のNシリーズで2体)。

全試験体について,復元力特性の適合性を大局的に評価するために,最大耐力,層間変形角+3.0%に達した直後の除荷剛性,主筋初降伏時の割線剛性,以上を実験結果と比較したものを図-6,7,8に示す。参考のために,単一ばねモデルによる従来の方法でモデル化したものについても解析を行い,図中にプロットした。従来モデルでは,履歴モデルを武田モデルとし,曲げ降伏時の変形を菅野式より推定する他は,部材端ばねと同様に復元力特性を定めた。

最大耐力は,従来モデルでは実験値よりも大きく評価 するものが多く見られるが,提案モデルでは同等ないし 小さく評価する傾向が見られる。除荷剛性は従来モデル では過小評価し,提案モデルでは実験値に概ね一致する。 割線剛性は,従来モデルと提案モデルとで差が小さい。

提案モデルは,変形が小さく主筋が未降伏の段階では, 従来モデルと同等の剛性を示すことが確認できる。また, 変形が大きくなり回転ばねが塑性化した段階では,最大 耐力や除荷剛性がより実験結果と適合すると言える。

3.1 平面骨組モデル

3.1 解析対象

実大4層鉄筋コンクリート造建物の振動台実験¹²につ いて,長辺方向の純ラーメン架構を直列ばねモデルでモ デル化し,静的繰返し骨組解析を行う。

この建物は現行の耐震設計基準を満たすように設計 され,梁が上端引張になるト形接合部を除いて柱梁接合 部のせん断余裕度は1.19~2.95である。また,靭性指針 ¹³⁾に基づく通し梁主筋の付着余裕度は1.01~1.43である。 柱梁曲げ強度比は,十字形接合部で0.92~0.99,梁が上 端引張になるト形接合部で0.92~1.06,梁が下端引張に なるト形接合部で1.70~1.87である。伏図および軸組図 を図-9に,代表的な断面のリストを図-10に示す。

振動台実験では,気象庁神戸海洋気象台観測波,JR鷹 取駅記録波が3方向同時で入力された。その結果,全加 振終了時点で,2階の十字形接合部でせん断ひび割れ幅 が53mmに達する損傷が生じた。また,2階のト形接合 部では,せん断ひび割れ幅が1.5mmとなり,梁と同程度 の損傷になった。

3.2 解析方法

骨組解析のモデルを図 - 11 に,載荷履歴を図 - 12 に 示す。外力分布は Ai 分布より求めた。最上階の L 形接 合部および 1 階の柱脚については,接合部破壊はしない と仮定して,接合部ばねを剛とした。回転ばねの復元力 特性は 2章と同様に定めた。ただし,梁の強度・剛性の 算定には RC 規準⁷に基づきスラブを考慮した。柱の強 度には長期軸力を考慮したが,変動軸力は無視した。

接合部終局モーメントを算定するにあたっては,以下 の3点について接合部終局モーメントの算定式の適用範 囲を超えていることに注意が必要である。すなわち,(a) 床スラブが取り付いている点,(b)梁の上下端で主筋量 が異なる点,(c)接合部の上下で柱の軸力が異なる点で ある。(a)については,スラブコンクリートおよびスラ ブ筋を無視した。(b)については,梁主筋量として上端 筋量・下端筋量の平均値を算定式に代入した。(c)につい ては,柱軸力として上下柱の長期軸力の平均値を算定式 に代入した。なお,(b),(c)の諸元を平均化せずに,加力 方向によって異なる強度を接合部ばねに与えて解析を行 ったところ,平均化した場合と比して全体の挙動には大 きな差がなかった。

この建物は,接合部せん断余裕度,主筋の付着余裕度 とも1以上を確保しているため,従来の設計では接合部 を剛とし,柱・梁は曲げ強度が発揮され,良好な履歴性 状を有するとしてモデル化されうるものである。そこで, 単一ばねモデルに武田モデルを用いた従来モデルでも解 析も行い,提案モデルとの比較を行う。

コンクリート圧縮強度: 30.2~41.0N/mm², 主筋種別: SD345

断面		断面	8 8 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	, , 	888
D D	500 500	BxD	300 x 600		
BXD		上进位	6-D22	3-D22	6-D22
主筋	10-D22	上如朋	0-022	5-022	0-022
帯筋	3.4-D10@100	下端筋	3-D22	3-D22	3-D22
仕口	2 2-D10@140	腹筋	4-D10		
=,= B10(5)110		肋筋	2-D10@200		

図-12 加力スケジュール

3.3 解析結果

(1) 実験結果との対応

解析終了時の塑性ヒンジの分布を図 - 13に示す。塑性ヒ ンジの種類に着目すると,接合部の損傷を考慮した提案 モデルでは2階の接合部の周りで接合部ばねの塑性化に よるヒンジができている。これは,実験で2階の十字形接 合部,ト形接合部にせん断ひび割れが生じた¹²⁾ことと良 く対応している。

(2) 全体の応答と損傷位置

図 - 14にベースシア係数 - 全体変形角関係を示す。こ こで,全体変形角とは屋上床変位を屋上高さで除した値 である。提案モデルでは,接合部の損傷を考慮していな い従来モデルよりも最大耐力が約 12%小さく,履歴曲線 にピンチング性状が顕著に表れている。

最大層間変形角の分布(図-15)では,モデルの相違 により1,2層に違いが見られ,提案モデルでは2層の変 形が最も大きい。図-13の塑性ヒンジの分布は,従来モ デルでは1層と2層の崩壊形なのに対して,提案モデル では2層単独の崩壊形が形成されている。

(3) 履歴吸収エネルギー

加力サイクルごとの等価粘性減衰定数を図 - 16 に示 す。すべてのサイクルで,提案モデルの等価粘性減衰定 数が従来モデルの値を下回る。特に加力サイクル 0.03 rad の 2回目では約 2倍の差がある。提案モデルを採用する ことによるエネルギー吸収量の減少は,無視できない。

(a) 従来モデル (b) 提案モデル 図 - 17 固有周期の変動

(4) 固有周期

従来モデルと提案モデルとでは,動的解析時の振動特 性も変化すると考えられる。そこで,全体変形角±20% サイクルについて,架構全体の固有周期の変動の様子を 図-17に示す。固有周期は解析ステップごとに固有値解 析を行って求めた。どちらのモデルでも,ベースシア係 数のピーク付近で1次固有周期が大幅に伸びる点は共通 している。また,2次固有周期の変動は1次固有周期と 比べると小さい。従来モデルでは,ピークから折り返す と固有周期が一定となる領域に推移するのに対して,提 案モデルの方では,ベースシア係数のピークの合間にも 固有周期が大きく変動する。これは個々の接合部ばねが 除荷後にスリップ領域に入るタイミングが異なるためだ と考えられる。

3.4 今後の課題

最後に,本解析方法の未検討課題について述べる。(1) 本解析方法は接合部終局強度と梁,柱の曲げ終局強度の 大小関係に非常に敏感である。接合部終局モーメントの 算定式の精度が確証できないような柱梁接合部が存在す る場合は,解析結果にも大きな誤差が生じると考えられ る。(2)本解析方法は,材端弾塑性ばねモデルに基づい ているため,逆対称曲げを仮定している。したがって, モーメント分布が仮定と大きく異なるような構造に用い た場合には大きな誤差が生じると考えられる。

4. まとめ

本論文では,鉄筋コンクリート造柱梁接合部の破壊機 構を考慮した骨組解析モデルとして,直列ばねモデルに より簡易にモデル化する手法を提案した。部分架構にお いて提案モデルの有効性を確認し,平面骨組において柱 梁接合部の破壊を考慮しない従来モデルとの比較を行っ た。以下に結果を要約する。

- 部分架構では実験結果の履歴曲線に近い応答が得られることが多いが、必ずしも精度の高い解析結果が得られるとは限らない。全体の傾向としては、従来モデルよりも適切に骨格曲線を評価することができる。
- 2) 平面骨組の解析結果を,対象建物の実験結果と照らし 合わせると,破壊性状に適合性が見られた。提案モデ ルは,接合部強度を正しく推定できれば,接合部破壊 が起こる現象を再現することができる。
- 3)従来モデルと比較すると、最大耐力は約12%、等価粘 性減衰定数は最大5割小さい。崩壊形、固有周期の変 動の仕方も異なる。接合部の破壊機構を考慮しないモ デルでは、架構の強度や履歴吸収能を過大評価し、損 傷位置や瞬間剛性を適切に評価できない。

参考文献

- 1) 塩原等:鉄筋コンクリート柱梁接合部:見逃された 破壊機構,日本建築学会構造系論文集, Vol.73, No.631,pp.1641-1648,2008.9
- 2) 田尻清太郎,塩原等,楠原文雄:RC 柱梁接合部の ための弾塑性骨組解析用マクロエレメント,コンク リート工学年次論文集,Vol.27,No.2,pp.415-420, 2005
- 3) 千葉隆史, 芳村学: 接合面でのすべりを考慮した PCa 構造の地震応答解析, コンクリート工学年次論 文報告集, Vol.15, No.2, pp.707-712, 1993
- Takeda, T., Sozen, M.A., and Nielsen, N.N.: Reinforced Concrete Response to Simulated Earthquakes, Journal of the Structural Division, ASCE, Vol96, No.ST12, pp.2557 2573, 1970.12
- 楠原文雄,塩原等,田崎渉,朴星勇:柱と梁の曲げ 強度の比が小さい鉄筋コンクリート造十字型柱梁 接合部の耐震性能,日本建築学会構造系論文集, Vol.75, No.656, pp.1873-1882, 2010.10
- 6) 塩原等ほか:鉄筋コンクリート造外部柱梁接合部の 耐震性能におよぼす設計因子の影響に関する実験, 日本建築学会大会学術講演梗概集(北陸), pp.391400,20109
- 高山慧,塩原等,楠原文雄:鉄筋コンクリート造十 字形柱梁接合部の直列ばねモデルの力学的性状に 関する検討,日本地震工学会・大会 2012 梗概集, pp.212-213,2012.11
- 8) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,日本建築学会,2010.2
- 納原文雄,塩原等:鉄筋コンクリート造十字型柱梁 接合部の終局モーメント算定法,日本建築学会構造 系論文集,Vol.75,No.657,pp.2027-2035,2010.11
- 10) 国立大学法人東京大学工学系研究科建築学専攻,株 式会社大林組技術研究所:平成21年度国土交通省 建築基準整備促進補助金事業(テーマ名6:鉄筋コ ンクリート造の各種柱はり接合部の耐力評価に関 する実験)「主筋が接合部内に定着される柱梁接合 部の耐力に関する調査」調査報告書,2010.3
- 11) 菅野俊介:鉄筋コンクリート部材の復元力特性に関 する実験的研究,東京大学博士課程学位論文,1970
- 12) 長江拓也ほか:4 階建て鉄筋コンクリート造建物を 対象とした大型振動台実験,日本建築学会構造系論 文集, Vol.76, No.669, pp.1961-1970, 2011.11
- 13) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説,日本建築学会,1999.8