論文 曲げ・せん断にねじりが同時に作用する RC 部材の耐荷機構

小川 悠*1・加藤 慎介*2・川崎 悠馬*3・岡本 享久*4

要旨:本研究は,兵庫県南部地震により破壊した RC 橋脚を例にとり,当時あまり議論されていなかったね じりモーメント(以下,ねじりと略称する)の影響について再考し,その結果から震災を受けたこの種の RC 部材の耐荷機構について考察を加えたものである。橋脚を想定した RC 梁にねじりを含む複合断面力を載荷 して,耐力,ひび割れ性状を見るとともに,AE(Acoustic Emission)法により内部での破壊進展度合いについ て考察した。その結果,ねじりおよびねじりを含む複合断面力を受ける RC 部材には特有の破壊メカニズム が存在することが分かった。

キーワード:地震, RC 部材, ねじり, 複合断面力, AE 解析, ひび割れ位置評定

1. はじめに

1995年1月17日に発生した兵庫県南部地震による数 多くの土木構造物の崩壊は日本のみならず世界にも大き な衝撃を与えた。特に,阪神高速神戸線の倒壊は記憶に 鮮明に残っているであろう。これらの被災した RC 橋脚 は,震災後ただちに有識者により,曲げ破壊,曲げせん 断破壊或いはせん断破壊として分類された。我々は,こ の被災した RC 橋脚について当時の写真を入手し,約 200 体の写真による観察を行った。その結果,11%の写真に ついては震災時の複雑な荷重条件において,曲げ破壊, 曲げせん断破壊或いはせん断破壊だけではなく,ねじり が作用している可能性が見受けられた。その原因として, 最初は地盤と地震波動の組み合わせから最弱位置の1本 の橋脚が倒壊し,その影響が高架部とピルツ構造の橋脚 でつながる隣接橋脚にねじりが作用し,次々と連鎖的に 倒壊したものとも考えられる。(写真-1)

ねじりがコンクリート構造物に作用した場合,例えば, 純ねじり条件下においては,独特の「らせん状のひび割 れ」が部材の全面に生じる。「らせん状のひび割れ」の一 部分は一般のせん断による斜めひび割れに類似したひび 割れ性状(特にひび割れ角度)を示す。被災した阪神高速 道路神戸線の橋脚において,このような「重なり合う面」 (写真-2 右,写真-3 下)と「打ち消し合う面」(写真-2 左, 写真-3 上)が見受けられる。

以上のような特徴的なひび割れ性状を有するコンク リート構造物には、曲げ・せん断のみならずねじりも影 響していると考えられ、構造物への震災後の復旧方法を 考える上で、ねじりの影響を無視はできない。よって、 本研究では、地震と高架橋構造との相関により発生する 「ねじり」が構造物に与える影響に着目し、複合断面力 を受けた RC 部材の耐荷機構やひび割れ性状を実験的に 把握する。また,AE法を用いることで,内部のひび割 れ発生時に放出される弾性波を計測し,得られた種々の パラメータを解析することにより,内部ひび割れの分類, 位置標定および進展過程等を確認できる。これにより, 従来あまり議論されていなかった「曲げ・せん断」,「純ね じり」および「曲げ・せん断・ねじり」による内部破壊性状 の違いの確認を試みる。

本研究は、上述の実験と内部破壊の解析の両面から、 RC部材におけるねじりのメカニズムを把握することが 目的である。

写真-1 阪神高速道路神戸線 125番RC橋脚

写真-2 阪神高速道路神戸線 62番 RC 橋脚

*1 立命館大学 理工学部 (学生会員) *2 立命館大学大学院 理工学研究科 (学生会員) *3 立命館大学 理工学部都市システム工学科助教 工博 (正会員) *4 立命館大学 理工学部環境システム工学科教授 工博 (正会員)

写真-3 阪神高速道路神戸線 106 番 RC 橋脚

2. 曲げ・せん断にねじりが同時に作用する RC の終局耐 カとひび割れ性状

2.1 実験概要

供試体の概要を表-1 に示し,配筋図を図-1 に示す。 供試体は,全てに共通して断面寸法 250mm×250mm,ス パン 1800mm,コンクリートかぶり 30mm とし,MQ8, MQT8 および MQT11 では上端軸筋および腹鉄筋に D10 を,下端軸筋に D16 を,MQ13,PT13 および MQT13 で は上端軸筋および下端軸筋に D22 を,腹鉄筋に D10 を使 用した。

表-1 に表す腹鉄筋比(=Av/bs, 但しAv: 腹鉄筋1組の断面積(mm²), b:部材の腹部幅(mm), s:腹鉄筋間隔(mm)とする。)は MQ8 および MQT8 において 0.26%, MQT11 において 0.35%, MQ13, PT13 および MQT13 においては 0.38%と変化させている。主鉄筋比

(=As/bd ただし, As:主鉄筋 2 本分の断面積 (mm²), b:部材の腹部幅 (mm), d:有効高さ (mm²)) は MQ8, MQT8 および MQT11 で 0.75%, MQ13, PT13 および MQT13 では 1.48%とする。載荷条件は MQ8, MQ13 で 曲げ・せん断力を, PT13 ではねじりモーメントのみを, MQT8, MQT11 および MQT13 においては曲げ・せん断 に加え, ねじりを同時に作用させている。なお,使用し たコンクリートおよび鉄筋の物性を,表-2 および表-3 にそれぞれ示す。

載荷方法は MQ シリーズでは,曲げスパン 600mm,せん断スパン 600mm として,3 等分一方向載荷試験を行った。PT13 では供試体の端部ではり軸方向中心から垂直方向に偏心距離 250mm の位置で対称に載荷することでねじりモーメントを作用させた。また, MQT シリーズは,図-2 に示す方法により,曲げスパン 600mm,せん断ス

パン 600mm とし、はり軸方向中心から垂直方向に偏心 距離 250mm の位置に支点を設け、対称に載荷すること によって、曲げ・せん断にねじりを同時に作用させる。 実験における曲げモーメントとねじりモーメントの比率 (以下, T/M) は, 以下の根拠より T/M=0.42 とした。 すなわち、岡本・李らの既往の研究成果¹⁾²⁾より曲げ・ せん断とねじりを同時に受ける場合で T/M≧0.6 では, 純ねじり下で発生する「らせん状のひび割れ」と同様な ひび割れが断面の全面に発生するが、この値以下の T/M では「らせん状のひび割れ」は発生しない。よって本研 究では写真判定の考察も参考にして、曲げ・せん断の影 響とねじりの影響の両方が構造物に現れる T/M=0.42 と 固定し載荷試験を実施した。また MQ13, PT13 および MQT13 については, ひび割れ発生時に放出される弾性波 を計測する AE センサーを側面に4箇所,上面に2箇所 設置した。

表-1 供試体概要

供試体名	腹鉄筋比	腹鉄筋本数	載荷冬州	AE測定		
庆武体石	%	本	戰害者			
MQ8	0.26	0	曲げ・せん断	無		
MQT8	0.20	J	曲ば、サムド・わじし			
MQT11	0.35	11	田口・ビン町・ねしり			
MQ13			曲げ・せん断			
PT13	0.38	13	純ねじり	有		
MQT13			曲げ・せん断・ねじり			

表-2 使用したコンクリート

卅≓┼十夕	圧縮強度	引張強度	曲げ強度	静弾性係数
(洪武)体石		kN/mm²		
MQ8	35.1	3.51	4.72	22.7
MQT8	34.5	3.18	5.15	23.6
MQT11	26.2	2.64	4.64	26.4
MQ13	54.2	3.40	6.56	34.0
PT13	53.9	3.80	6.64	40.8
MQT13	54.4	3.47	6.23	34.3

表-3 使用した鉄筋

2.2 終局耐力

実験より得られた曲げモーメントーたわみ関係を図-3 に示す。曲げ・せん断載荷試験に供した MQ8 は終局耐 力 M=35.70(kN・m)で典型的な曲げ引張破壊であった。 しかしながら,同供試体に「ねじり」を含む複合断面力を 載荷した MQT8 においては,終局耐力 M=19.80(kN・m) と約 45%の減少がみられ,ねじりとせん断の影響が共存 するせん断破壊をおこした。さらに腹鉄筋量を増やした MQT11 においても,終局耐力 M=23.70(kN・m)と多少耐 力が向上したものの MQT8 と同様のせん断破壊は免れな かった。MQ13 では終局耐力 M=61.98(kN・m)で曲げ引張 破壊をおこした。MQT13 においては終局耐力 M=40.14(kN・m)となり,上述の結果と同様に,ねじりの 影響で耐力が約 35%低下し,脆性的なせん断破壊に移行 した。

これより以前から指摘されているように,ねじりの作用 は構造物の耐荷力に大きく影響することが認められた。

2.3 ひび割れ性状

図-4に全供試体の終局状態のひび割れ図を示す。なお, 各面は上から順に,側面1,下面,側面2,上面である。 「曲げ・せん断」載荷に供した MQ8 および MQ13 は純曲 げスパンに生じたひび割れが進展し,軸方向鉄筋降伏後 に終局に至った。

「曲げ・せん断およびねじり」の複合断面力載荷に供し た3供試体において, MQT8 および MQT11 では, 側面1・ 左側と側面2・右側で斜めひび割れの発達による破壊を 生じた(実線で囲んだ箇所)。一方で、その対称となる側 面1・右側と側面2・左側には曲げひび割れが生じたが斜 めひび割れは発達していない(破線で囲んだ箇所)。また, MQT13においても側面1・右側と側面2・左側に斜めひ び割れが見られるものの,ひび割れ幅も狭く,損傷度合 は低い。曲げ・せん断にねじりが同時に作用する RC は りのひび割れ性状は、せん断とねじりのそれぞれの主引 張応力方向が重なる面(side X)で、斜めひび割れが極端に 発達し、一方、主引張応力方向が直交し影響が相殺され る面(side Y)では、斜めひび割れは生じず曲げひび割れの みが発生した。これは「曲げ・せん断」載荷の MQ シリー ズのひび割れと「純ねじり」載荷の PT13 のひび割れが重 なる箇所と直交する箇所と同義である。この結果から, 複合断面力の破壊は一般的なせん断破壊と違い、側面の 両サイドのひび割れ性状が全く異なる特徴的な破壊をす ることが示された。

MQT8

3. 曲げ・せん断にねじりが同時に作用する RC の AE 解 析による内部破壊性状の把握

3.1 はじめに

前章の実験結果より、曲げ・せん断にねじりが同時に 作用する複合断面力下の RC 部材は、せん断力とねじり によるそれぞれの主引張応力方向が重なる面での「局所 的な破壊」であることが確認された。また、前田らの既往 の研究成果³⁾によると、複合断面力で終局に至った RC 供試体は「曲げ・せん断」のみの再載荷において十分な残 存曲げ耐力を有しているということが報告されている。 そこで本章では、AE 法を用いて、「曲げ・せん断載荷供 試体(MQ13)」、「純ねじり載荷供試体(PT13)」および「曲 げ・せん断およびねじりの複合断面力載荷供試体 (MQT13)」について、それぞれの主に内部での破壊性状・ 進展状況を確認する。

3.2 実験概要

AE 測定の対象供試体は,前章の MQ13, PT13 および MQT13 とする。供試体概要,使用したコンクリートおよ び使用した鉄筋は表-1,2 および3 に示す。また,図-1 に配筋図を示す。MQ13 は「曲げ・せん断載荷」,PT13 は 「純ねじり載荷」,MQT13 は「複合断面力載荷」に供した。 また全供試体に,ひび割れ発生時に放出される弾性波 を計測する AE センサーを側面に 4 箇所,上面に 2 箇所 設置した。各供試体における AE センサーの設置位置及 び,設置座標を図-5 及び表-4 に示す。尚,表-4 に示す x, y,z は図-5 に示す原点からの距離を意味している。前章 の実験より,複合断面力を載荷した供試体においてせん 断スパンの side X と side Y でそれぞれ異なったひび割れ 性状が見られたため,せん断スパンに AE センサーを設 置した。

表-4 AE センサー設置位置座標(単位:m)

	х	У	Z
1	0.230	0.000	0.080
2	0.850	0.000	0.160
3	0.890	0.025	0.000
4	0.190	0.175	0.000
5	0.870	0.250	0.075
6	0.180	0.250	0.170

3.3 AE の発生挙動

この節では AE センサーで測定された AE の Hit 数, 荷 重を解析し, 各供試体の内部破壊の特徴を把握していく。 図-6 および図-7 に, 各供試体における AE の Hit 数と曲 げモーメントまたはねじりモーメントの関係を示す。

MQ13 および MQT13 では, 載荷初期の段階から AE の Hit 数が増加, すなわち, ひび割れが発生している。MQ13 では, 載荷中に初ひび割れ発生が観察された 9.00(kN・ m)付近を境に AE の Hit 数が急激に増加していき,一定 の割合で増加して終局に至った。MQT13 では,初ひび割 れが観測された 5.00(kN・m)で AE の Hit 数が上昇し, side X にひび割れが入った後に, side Y に斜めひび割れが観 測された 20.00(kN・m)を境に急激に破壊が進行して終局 に至った。PT13 では,斜めひび割れが多数発生した 12.50(kN・m)を境に AE の Hit 数も多くなり, 16.60(kN・ m)で終局に至った。

このことから,「純ねじり」が載荷された RC 部材は初 期の段階では内部にひび割れが発生せず,急激に内部ひ び割れが発生することが分かる。「複合断面力」が加わる RC部材はねじりの影響を受け、「曲げ・せん断」が加わるRC部材と比べ早い段階でAEのHit数が増加することが分かる。

図-9 各供試体の内部ひび割れ分類図

3.4 AEのパラメータ解析

各供試体に設置した AE センサーが計測した弾性波の 波形をもとに、内部ひび割れの種類の分別をおこなった。 AEによる弾性波のパラメータを図-8に示す。このAE による弾性波のパラメータより, 立上り時間および周波 数分布の違いを解析することで、内部ひび割れを引張型 クラックとせん断型クラックとその二つが混ざった混合 型クラックに分けられる。立上り時間は、しきい値の設 定に影響されることを考慮して,最大振幅値により立上 り時間を除したパラメータ RA 値(立上り時間/最大振幅 値)を用いる。また、周波数分布の相違を考慮し、AEの 周波数特性値として解析に用いられる継続時間により AE カウント数を除したパラメータを平均周波数(AE カ ウント数/継続時間)と呼ぶ。この RA 値および平均周波数 を用いることで、内部ひび割れを分別できる。各供試体 の内部ひび割れ分類図を図-9に示す。RA値と平均周波 数の割合は、散布図全体が把握できるように1:3とした。 図中の数字は, 左上が引張型クラックの割合を, 右上が せん断型クラックの割合を表す。また, 混合型クラック は分割線上に示される。PT13 では供試体全面が純せん断 となり, 全面に斜めひび割れが発生することがあげられ る。MQT13 については, MQ13 と比較するとせん断型 クラックの割合が増加している。これは複合断面力に存 在するねじりモーメントの影響よりせん断型クラックが 増えたと考える。

3.5 内部ひび割れの位置評定

位置標定において,初期ひび割れが発生する段階を A mode,終局耐力の 1/3 の荷重段階(使用限界段階)を B mode,終局段階を C mode とし 3 段階に分けて内部破壊の進行状況を観察した。段階別の各供試体の荷重を図-9 に示す。また,この 3 段階において,特に内部ひび割れの変化が著しかった A mode および B mode の位置標定を前節より引張型,せん断型,混合型,に分類し図-9,10 および図-11 に示す。この図は,図 5 で示した 6 か所のAE センサーから位置評定された内部ひび割れを,Y-Z の断面から X 方向に見た断面図である。

A mode では, MQ13 と MQT13 では曲げモーメント 9.00(kN・m)と 4.50(kN・m)の, PT13 ではねじりモーメン ト 5.54(kN・m)の段階を示している。MQ13 においては, 引張緑(z=0.25)から中央にかけて引張型, せん断型クラッ クがのびていることがわかる。これは実験の際に確認さ れた曲げひび割れと同様の傾向を示している。PT13 にお いては, 表面に初期ひび割れが入っているにも関わらず, 内部での破壊はあまり進行していないことがわかる。こ れは, 前章で述べたように断面外周上から破壊が進行す ることを示している。MQT13 では 2 章で言及した side X に引張型クラックが集中しており, せん断とねじりの主 引張応力方向が重なる面から破壊が進行していることが わかる。また, z=0.25 の位置や断面中央にクラックが入 っているのは, 曲げモーメントの影響である。

B mode においては, MQ13 と MQT13 ではそれぞれ曲 げモーメント 30(kN・m)と 24.3(kN・m)の, PT13 ではね じりモーメント 13.75(kN・m)の段階を示している。MQ13 では, 断面中央側に引張型クラックおよび混合型クラッ クが急増していることが確認できる。一方, PT13 におい ては断面中央にクラックが確認できず, 断面外周に沿う ようにクラックが進行している。これより, ねじり破壊 では断面外周からの破壊の進行が特徴づけられる。 MQT13 では, 断面中央の曲げひび割れや side Y のせん

断ひび割れが進展している。この段階になると断面表面 に多くのひび割れが確認され,side X において,斜めひ び割れの幅が大きく開いていることも確認できた。

図-10 MQ13 断面図

図-11 PT13 断面図

図-12 MQT13 断面図

C mode では各供試体において、断面全体に3種類の内 部ひび割れが進展した。これより, MQ13の「曲げせん断」 破壊は、初期の段階で最大引張縁の下面から中央にかけ て内部ひび割れが発現し,使用限界段階まで内部破壊が 中央に向かって増加していくことが分かった。また, PT13の「純ねじり」を受けた RC 部材では、ひび割れ発現 の段階から,引張型クラックが断面外周状のみに発生し, 使用限界段階までは断面外周上に内部ひび割れが増加し てゆき、使用限界を超えると中央部にもひび割れが進展 することが分かった。MOT13の「複合断面力」が加わる RC 部材では、ねじりの影響より初期ひび割れの段階で は、断面外周状から引張型クラックが入りながら、中央 にもひび割れが発生してゆき使用限界段階までは、断面 外周上に引張型クラックが増加しながらも、断面中央に 向かって増加してゆき、使用限界到達以後には、内部ひ び割れが急増していく事がわかった。

4. まとめ

本研究の範囲内で,得られた結果を以下に示す。 (1) 設計上曲げ破壊を起こす供試体において,ねじりモ ーメントが同時に影響すると,せん断耐力が低下して, 脆性的なせん断破壊に移行することが確認できた。 (2) ねじりを含む複合断面力の破壊性状は,せん断とね じりのそれぞれの主引張応力方向が重なる面で大きな斜 めひび割れが進展し,その他の面ではひび割れが少ない 「局所的な破壊」であることが実験的に確認できた。 (3) 「純ねじり」は,初期段階から使用限界段階まで断 面外周状で内部破壊がおこる破壊であり,「曲げ・せん 断・ねじり破壊」は,初期は「純ねじり破壊」,中期以降は 「曲げ・せん断破壊」と「純ねじり破壊」が共存する破壊で あることがわかった。

謝辞

本研究を進めるにあたり,立命館大学の柳田龍平君に は、実験に助力して頂きました。また,阪神高速道路株 式会社様より兵庫県南部地震の基調な写真を提供して頂 きました。ここに、謝意を表します。

参考文献

 岡本 享久,長滝 重義:曲げ・せん断とねじ りを同時に受ける鉄筋コンクリート部材の耐力と 変形,土木学会論文集,第360号,V-3,1985.8
岡本 享久,李 承漢,長滝 重義:鉄筋コンクリート部材のねじり耐荷機構に関する一考察,土木学会論 文集,第390号,V-8,1988.2
前田 祐助,加藤 慎介,岡本 享久:曲げ・ せん断にねじりが同時に作用する RC 部材の破壊性 状に関する一考察,コンクリート工学年次論文集,

34巻, 2号, 2012