論文 長野県北部の地震により被災した鋼コンクリート合成構造体育館の 被災要因に関する研究

前澤 佑輔*1·土井 希祐*2·鈴木 敏之*3

要旨:長野県北部の地震により被災し, SRC 柱脚の曲げ降伏, RC 壁のせん断ひび割れ,屋根ブレースの破断, 座屈などの被害を生じた鋼コンクリート合成構造体育館の被災要因を弾性振動解析により検討する。解析結 果は,2階 SRC 柱脚部は実被害と同様の結果になり,1階 RC 壁も同様に実被害との一致が見られた。屋根ブ レースは多くの箇所で降伏強度を超えており,降伏箇所は被害箇所と概ね一致していた。層間変形角は一次 設計の制限値 1/200 を超える箇所はなかった。

キーワード:鋼コンクリート合成構造,重層体育館,弾性振動解析,終局強度,層間変形角,被災要因

1.研究の目的、背景

2011 年 3 月 11 日の東北地方太平洋沖地震に誘発され た 3 月 12 日未明の長野県北部を震源とする M6.7 の地震 により多くの建物が被災した。この地震により,天井落 下等の大きな被害を受けた鋼コンクリート合成構造体育 館がある。体育館は避難場所として活用されることが多 いことから,本研究では,当該建物について弾性解析を 行い,その被災要因を検討することを目的としている¹⁾。

2.検討対象建物

検討対象建物は、新潟県津南町にあるK小学校で竣工年は 1994年、鋼コンクリート合成構造3階建ての体育館がエキスパ ンション・ジョイントを介しRC造3階建て校舎と接続している。 建物は、所謂重層体育館であり、1階がRC造、2階がSRC造、3 階がS造となっている。柱は3階柱梁接合部直下までRCで被覆 されている(写真-1)。桁行き方向は、4m×8スパンのラーメ ン構造、梁間方向は、1階が11m+7.5mの2スパン、2・3階が 18.5m×1スパンの一部耐震壁付ラーメン構造である構造階高 は1階が4.78m、2階が4m、3階が3.95mである。SRC柱脚は2階 フロアレベルにあり、屋根面には丸鋼ブレースが全面に配置 されている。(図-1~図-6)。主な柱、梁の断面を表-1, 表-2に示す。

検討対象建物の被害状況は, E-5のSRC柱脚において被りコ ンクリートが脱落し,主筋の露出および座屈を生じていた(図 -2、写真-2)。エキスパンション・ジョイント部付近の体 育館棟の内壁にはせん断ひび割れが発生している箇所もあっ た(図-1,図-2)。この他の箇所でもせん断ひび割れが発 生している箇所があった。また,屋根ブレースが多数破断し, 吊り天井のパネルが広範囲で落下していた(写真-3)。被災 時は,積雪時期ではあるが,山形の落雪屋根であるため,積 雪がほとんどなかったと考えられる。

*1 新潟大学 大学院 自然科学研究科 (学生会員)
*2 新潟大学 工学部建設学科教授 工博 (正会員)
*3 新潟大学 工学部建設学科 (非会員)

2 3 4 5 6 7 8 9 10

図-2 体育館平面図

2階	Ξ		Ξ	/
B×D	650×800	650×800	650×650	/
主筋	12-022	16-D22 12-D22	8-D22	
動態	D13@100	D13e100	D13@100	
鉄骨	H-200×200×8×12	H-488×300×11×18	H-200×200×8×12	
1階				
B×D	650×800	650×800	650×650	650×650
主筋	16-D22	16-D22	10-D22	14-D22
動筋	D10@100	D10@100	D10@100	D10@100

表—2 梁断面図

174	G1	G2	G3	64	G4A
2階				両端 中央	
В×D	400×950	400×850	250×1950	400×750	400×750
主筋	14-D25 10-D25	10-D25 8-D25	B-D25	7-D25 6-D25	8-D25
腺筋	4-D25	2-D10	8-D10	2-D10	2-D10
85.85	D13@200	D13@200	D13@200	D13@200	013@200
市場	FG1	FG2	FG3	FG4	FG4A
1階	西端 中央	南端 中央	[]	高端 中央	
8×D	400×1200	350×1000	250×1000	350×1000	350×1000
主筋	10-025	10-D25 8-D25	8-D25	7-025 6-025	6-D25
BRAS	6-D10	4-D10	4-D10	4-D10	4-D10
助筋	D13@200	D13@200	D13@200	D13@200	013@200

図―6 5通り軸組図

写真―2 SRC柱脚部の損傷

写真—3 屋根ブレースの破断

3.解析方法

対象建物を3次元フレームにモデル化し、3次元解析 ソフト Multiframe4D を用いて解析を行う。鉄骨部材, SRC 柱・梁, RC 柱・梁は中心軸を通る線材としてモデル化 する。RC 無開口壁は圧縮力のみに働くブレースへ置換 を行う(式1)。SRC, RCの袖壁付柱・垂壁付梁等は等 価な長方形断面にモデル化し、剛域を開口部に合わせて 設定する。2 方向に袖壁が付いている場合は、一方向の み袖壁付柱・垂壁付梁等を等価な長方形断面にモデル化 し、もう一方向はダミー柱を設けブレースとしてモデル 化を行う。屋根ブレースは端部をピンとする。1 階床面 および、体育室の床である2階床面を剛床と仮定し、基 礎梁節点,2 階梁節点をそれぞれ同一変位グループとす る(図-7)。建物質量は、柱、梁については部材質量と して入力し, その他の床スラブ, 壁等の質量は支配面積 に応じて節点質量として入力する。以上の解析仮定の下 で弾性振動解析を行う。

 $A_{B} = \frac{L_{B} \cdot A_{W} \cdot G_{C}}{\kappa \cdot H_{W} \cdot E_{C} \cdot \cos^{2}\theta} \qquad \dots \dots (1)$ $A_{B}: 無開 口壁のブレース置換断面積$ $L_{B}: ブレース長さ$ $A_{W}: 壁の断面積$ $G_{C}: コンクリートのせん断弾性係数$ $<math>\kappa : 形状係数(\kappa = 1.5)$ $H_{W}: 壁の高さ$ $E_{C}: コンクリートのヤング係数$ $\theta : ブレースと梁の角度$

3.1 モード解析

モード解析は、減衰を Rayleigh 型として 1 次から 20 次まで解析を行い、固有周期を算出する。モード形状を 確認しどのモードでの変位が大きく影響し被害が生じた のかを確認する。

3.2 弾性振動解析

モード解析結果に基づいて弾性振動解析を行う。地震 波は当該建物に最も近い K-net 津南(NIG023)での観測 波を使用する。最大加速度は,東西方向の 703.72(gal)で あり,観測波を直接入力して弾性振動解析を行う。当該 建物に対する地震波の入射角度を図-8に示す。東西方 向に向いている桁行方向に大きな加速度が作用すること

図—8 入力地震波入射方向

4.モード解析結果および考察

すべてのモードの固有周期は高さによる略算式 (T=H×(0.02+0.01×a), H:建物高さ,a:建物高さ のうち鉄骨造の高さの比)により算出した固有周期より も小さな値となった(表-3)。1次モードおよび2次モ ードは,桁行方向に変位を生じるモードである(図-9)。 3次モードでは梁間方向に変位が生じており,モード形 状は屋根がたわむような形であり,正の方向に変位が生 じている(図-9)。4次モードも梁間方向の変位のモー ドで,3次モードとは逆の方向に変位するモードになっ ている(図-9)。

加速度応答スペクトル(h=0.05)と各モードの固有周期 とを比較すると(図-10),加速度応答スペクトルのピ ークにもっとも近いモードは1次モードであるが,モー ド質量が小さく共振を起こしても大きな変位が生じない ものと考えられる。3次モードは,加速度応答スペクト ルが1次から4次モードの中で最もモード質量が大きく 建物振動性状に影響を及ぼすものと考えられる。

点線(丸):1次モード 点線(四角):2次モード 破線:3次モード 一点鎖線:4次モード 図-10 加速度応答スペクトル(h=0.05)

5.振動解析結果および考察

最大応答変位を図―11および表―4に示す。屋根面 はy方向,z方向に大きく変形している。x方向は妻面の 3 階梁が最も大きな変形を生じている。地震波の主要動 は桁行方向(東西方向)が大きいが,解析結果では梁間 方向(南北方向)の変位が大きくなった。梁間方向の地 震動も比較的大きい。桁行方向はスパンが短く,梁間方 向は1スパンであり,桁行方向と比較すると梁間方向の 剛性が高い。また,両妻フレームには壁があり剛性が高 い。以上のことが影響していると考えられる。

図—11 最大応答変位

表—4 最大応答変位

節点番号	節点位置	dx(cm)	dy(cm)	dz(cm)
282	屋根	0.335	0.316	3.186
291	屋根	0.169	0.863	2.386
536	3階梁	1.812	0.032	0.327

5.1 屋根面の荷重伝達の確認

屋根ブレースに大きな被害が発生していることから屋 根面の荷重伝達性能の確認を行う。解析において最大応 答値が降伏強度を超えた屋根ブレースは 22 箇所であり (図-12),その応力度は 284N/mm²(丸鋼 φ 19(SR235) の降伏強度 235N/mm²) であった。降伏した屋根ブレー スは両妻面(1通りおよび 10通り)のフレーム近辺に分 布している。一方,実被害箇所は,視認できる箇所のみ を表示すると図-13の太線の箇所になっており,中間 フレーム側にも分布している。屋根ブレースが降伏して いることから,屋根ブレースの耐力が不足しており,荷 重伝達性能が不十分であったと考えられる。天井パネル が広範囲に落下していたのは両妻面寄りの 1 通りと 10 通りに隣接する部分であった。解析結果から,屋根ブレ ースに降伏,破断が生じ,屋根面に大きな変形が生じ, 吊り天井の金具の破損および天井パネルの落下が連鎖的 に発生し,広範囲にわたって落下したと考えられる。

太線:屋根ブレース破断箇所 黒着色部分:ブレースを視認できない箇所

図-13 視認できた屋根ブレース破断箇所

5.2 被害箇所の部材応力と終局強度について

実被害が生じた箇所の部材応力と終局強度^{2),3)}を比較 すると、2階 SRC 柱脚部において、解析結果では曲げ応 力が曲げ終局強度を上回っており、その箇所は E-5, E-6, A-5 の 3 箇所である(図-2、表-5)。2階 SRC 柱は同 一断面、同一配筋であるが、解析結果では 5 通り周辺の 柱に応力が集中しており、概ね実被害と一致した。桁行 方向はスパンが短く、梁間方向は1スパンであり、桁行 方向と比較すると梁間方向の剛性が高い。また、両妻フ レームには壁があり剛性が高いが、それ以外のフレーム は純ラーメンであり剛性が低くなっている。さらに、屋 根面は水平剛性が不足している。以上のことから、E-5 周辺の柱に大きな水平変形が生じ、被害が集中したと考 えられる。

B 通り1 階 RC 壁(壁厚:150mm,縦筋・横筋:D10 千鳥ダブル200mm@)では、せん断応力が終局強度²⁾を 超えている(図-13、表-6)。実被害が発生した箇所 以外も終局強度を超えているが、応力値は、実被害箇所 よりも低かった。実被害箇所のB-9,B-10では、柱の剛 域が大きく、柱が短柱になっており、大きなせん断応力 が生じている。また B 通りに壁が多いことから、地震力 がその箇所に集中し、終局強度を超えたと考えられる。

表--5 2階SRC柱脚部の応力状態

	E-5	A-5	E-6
	My(kN•m)	My(kN•m)	My(kN•m)
最大応答値	666	653	685
Mu(kN•m)	605	618	608

Vy:Y 方向のせんだん力 Vz:Z 方向のせん断力 My:Y 軸周りのモーメント Mu:曲げ終局強度 Qu:せん断終局強度

表--6 1階RC壁の応力状態

	B-7~8壁	B-9柱	B-10柱
	Vy(kN)	Vy(kN)	Vz(kN)
最大応答値	1881	2036	1232
Qu(kN)	1595	351	363

5.3 層間変形角

2階 SRC 柱脚部,1階壁せん断ひび割れ部,および両 妻面の間柱の層間変形角を表-7~表-10に示す。1 階,2階,間柱ともに1次設計の変形制限値1/200を超 えていなかった。

	1通り間柱		10通り間柱	
	3階下	3階上	3階下	3階上
各階高さ(cm)	380	533	380	533
各階最大変位(cm)	0.66	0.88	0.95	1.28
層間変形角(rad)×10 ⁻³	1.73	1.65	2.50	2.40

表-8 X方向の層間変形角(SRC柱脚部、1階壁)

	2階SRC柱脚部	1階壁せん断ひび割		割れ部
	E-5	B-7 ~ 8	B-8~9	B-9∼10
各階高さ(cm)	427.5	462.5	462.5	462.5
各階最大変位(cm)	0.15	0.03	0.03	0.03
層間変形角(rad)×10 ⁻³	0.36	0.06	0.06	0.06

表—9 Z方向の層間変形角(間柱)

	1通り間柱		10通り間柱	
	3階下	3階上	3階下	3階上
各階高さ(cm)	380	533	380	533
各階最大変位(cm)	0.04	0.01	0.06	0.003
層間変形角(rad)×10 ⁻³	0.10	0.02	0.15	0.01

☆── IU ∠ / 回の 層 间 変 形 円 (S R C 仕 脚 i	郭、	1階壁)
---------------------------------------	----	------

	2階SRC柱脚部	1階壁せん断ひび割れ部		
	E-5	B-7 ~ 8	B-8∼9	B-9~10
各階高さ(cm)	427.5	462.5	462.5	462.5
各階最大変位(cm)	0.79	0.26	0.24	0.21
層間変形角(rad)×10 ⁻³	1.84	0.57	0.51	0.45

5.4 振動解析結果(STEP775)

振動解析において屋根ブレースが初めて降伏強度を超 える解析 STEP は 775(時刻歴 7.75秒)であった。この STEP での解析結果を見ると,2階 SRC 柱脚部 E-6 が終 局強度より大きな応力が生じていた(表-11)。そこで, STEP775までの応答値について考察する。

降伏強度を超えた屋根ブレースは4本ある(図-14)。 降伏強度を超えた屋根ブレースの応力は237N/mm²であ り,1通り側のブレースが降伏強度を超えていた。また, 10 通り側の屋根ブレースにも降伏強度に近い応力が生 じていた。妻面の3階のRC壁の水平剛性が高く,中間 フレーム(E-5)との剛性差が大きいことから,その周辺 に応力が集中し,屋根ブレースに強制変形が生じ,屋根 ブレースの応力が大きくなり,降伏強度を超えたと考え られる。

表

— 1 1 2階SRC柱脚部の応力状態(STEP775)

/	E-5	A-5	E-6	
	My (kN•m)	My (kN∙m)	My (kN∙m)	
step775最大応答値	591	567	607	
Mu (kN∙m)	592	609	596	

2階 SRC 柱脚部において, E-6 の曲げ応力が終局強度 を超えており, E-5 の応答値も終局強度に極めて近い値 になっていた(表-11)。2階 SRC 柱脚部もこの時刻 までに被害が発生したと考えられる。一方,1 階壁せん 断ひび割れ部はせん断応力が終局強度を超えていなかった(表-12)。

STEP775 までの最大加速度は 702.3(gal)であり,主要動 の方向は東西方向である(図—15)。桁行方向(東西方 向)に加えて,梁間方向(南北方向)にも比較的大きな 加速度が作用しており,梁間方向中間フレームのスパン が18.5mと大きいことから,A通り,E通り2階柱脚部 が終局強度に近い値となったと考えられる。また、両妻 面周辺の屋根ブレースの応力も降伏強度が超えたと考え られる。地震動全体の水平方向加速度履歴を図—16に 示す,STEP775 までよりも南北方向に,さらに大きな加 速度が作用しており,吊り天井落下等の被害要因につな がったものと考えられる。

表—12 1階RC壁の応力状態(STEP775)

図-14 STEP775 までの屋根ブレース降伏箇所

図-15 地震波

6.まとめ

検討対象は、多雪地域である津南町にある K 小学校で ある。被害は2階 SRC 柱脚部の被りコンクリートの剥離, 鉄筋の座屈,1 階壁のせん断ひび割れ、屋根ブレースの 破断、座屈等である。モード解析および弾性振動解析を 行い、以下の知見を得た。

- (1) モード解析結果からは、梁間方向に変位が生じ屋根 がたわむ3次モードのモード質量が大きいことから、 このモードが建物振動特性に大きな影響を与えた モードであると考えられる。
- (2) 振動解析結果では、2 階 SRC 柱脚、1 階 RC 壁に終 局強度を越えている箇所があり、両妻面周辺の屋根 ブレースにも降伏強度を超えている箇所が見られ た。解析結果は概ね実被害と対応するものであった。 また、層間変形角は1次設計の規定値の1/200を超 える箇所は見られなかった。
- (3) 振動解析結果から、屋根ブレースが降伏強度に達する時刻と2階SRC柱脚部が終局強度に達する時刻は ほぼ同時刻であった。
- (4) 今後,弾性振動解析に加えて弾塑性解析を行い、より詳細な検討を行う予定である。

謝辞

本研究には K-net (防災科学技術研究所 強震ネットワー ク)のデータを使用させていただきました。

参考文献

- 前澤佑輔,土井希祐:前澤佑輔,土井希祐:長野県 北部の地震により被災した鋼コンクリート合成構 造体育館の被災要因に関する研究,日本建築学会大 会梗概,構造Ⅲ,p321~p322,2012,9月
- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・同解説 2001 年改訂版, 2001
- 日本建築防災協会:既存鉄骨鉄筋コンクリート造建 築物の耐震診断基準・同解説 2009 年改訂版, 2009