報告 棒形スキャナを用いた鉄筋コンクリート構造物のひび割れ発生原因 調査について

原田 耕司*1·伊藤 幸広*2·宮本 則幸*3·石橋 孝治*4

要旨: コンクリート内部に発生したひび割れの状況を簡易に精度良く調査出来れば、コンクリート構造物に 発生したひび割れの原因究明に役立つ。コンクリート内部の調査法としてはコア抜き調査が一般に行われて いるが、コアが分断されてひび割れ幅の正確な測定が困難な場合があるなどの課題があった。そこで著者ら は、コンクリート内部を簡易で精度良く調査できる棒形スキャナを開発した。本報告では、開発した棒形ス キャナの測定精度の検証実験について述べるとともに、棒形スキャナを用いて経年劣化によるひび割れが発 生した鉄筋コンクリート構造物の調査を行い、その発生原因の検討を行った事例を紹介する。 キーワード:維持管理、調査、微破壊検査、ひび割れ、コア抜き調査

1. はじめに

コンクリート構造物の変状としては、豆板、コールド ジョイント、砂すじ、表面気泡、浮きおよびひび割れな どが挙げられる¹⁾。これらはいずれもコンクリート構造 物の耐久性に影響を与える重要な変状であるが、特にひ び割れはコンクリートの劣化現象であるばかりでなく、 鉄筋腐食の原因にもなり、コンクリート構造物の耐力・ 耐久性・水密性などの諸特性を低下させる大きな要因と もなる。

ひび割れの発生原因は、材料、施工、使用・環境、構造・外力などがある。ひび割れの原因を推定するには、 コンクリート表面に発生したひび割れのパターンを調 査することが基本となり、公益社団法人日本コンクリー ト工学会では、ひび割れ発生原因毎のひび割れパターン を示している²⁾。

しかし, コンクリート表面のひび割れパターンだけで はなく, コンクリート内部に発生したひび割れの発生状 況を簡易に精度良く調査出来れば, ひび割れの発生原因 究明に役立つ。さらに, コンクリート内部のひび割れ幅 などが明らかになれば, ひび割れの補修計画にそのデー タが有効に活用できる。

コンクリートの内部調査法としては、コア抜き調査が 一般に行われている。しかし、コア抜き調査では、コア の採取に際し比較的大きな装置を必要とすることや、ひ び割れがコンクリート表面と平行に発生している場合 などに、コアが分断されてひび割れ幅の測定が困難にな るなど課題があった。

そこで,著者らは小径のドリル孔を利用してコンクリ ート内部のひび割れ発生状況を,簡易に精度良く調査で きる棒形スキャナを開発し,劣化診断への適用性の検討 を行ってきた^{3),4)}。

本報告では、開発した棒形スキャナのひび割れ幅の測 定精度の検証実験について述べるとともに、棒形スキャ ナを用いてひび割れが発生した鉄筋コンクリート構造 物の調査を行い、ひび割れ発生の原因について検討を行 った事例を紹介する。

2. 棒形スキャナについて

棒形スキャナを**写真−1** に示す。棒形スキャナは、コ ンクリートに ¢ 25mm の小径孔を削孔し、その孔壁面の 画像データを読取る装置である。

棒形スキャナで画像データを読取る原理は、紙面など を読取る一般のイメージセンサと同じ原理を用いてい る。具体的には、棒形スキャナの先端部にはイメージセ ンサが内蔵されており、その移動距離をエンコーダで計 測し、イメージセンサで読取った画像のラインデータと 合成することにより、簡易に鮮明な2次元画像(展開画 像)を作成できる。

なお,棒形スキャナは,**写真-2**に示すように手動で イメージセンサを回転させて,孔壁面の画像データを取 得する。

写真-1 棒形スキャナ

*1 西松建設(株) 技術研究所土木技術グループ 上席研究員 博士(工学) (正会員)
*2 佐賀大学 大学院工学系研究科都市工学専攻 教授 博士(工学) (正会員)
*3 (株)計測リサーチコンサルタント 企画開発部 部長
*4 佐賀大学 大学院工学系研究科都市工学専攻 教授 工博 (正会員)

写真-2 棒形スキャナでの調査状況

表-1 には棒形スキャナの仕様を示す。読取り有効サ イズの深さ方向は 210mm であるが,段取り替えをする ことにより,最大調査深さ 350mm まで調査が可能であ る。また,回転方向の有効読取りサイズは 160mm であ り,削孔する孔の直径が 25mm であることから,約2回 転分のデータを読取ることができる。棒形スキャナの能 力上,1回転だけのデータでも問題はないが,データの 信頼性を向上させるために,2回転分のデータを取得で きるようにした。

出力解像度は 600dpi であり,1 ピクセルあたり 0.042mmのサイズとなる。したがって,理論上は棒形ス キャナでは,0.042mm以上のひび割れを識別できること になる。

項目	仕様
削孔サイズ	直径 25mm(周長: 78.5mm)
読取り有効サイズ	深さ方向:210mm
	回転方向:160mm
最大調査深さ	350mm
出力解像度	600dpi
外径寸法	$81 \times 91 \times 662 mm$ (W×H×L)
データ保存方法	パソコン/SD カード
電源	単三型電池4本

表-1 棒形スキャナの仕様

3. 棒形スキャナのひび割れ幅の測定精度検証実験

棒形スキャナのひび割れ幅の測定精度を検証するために、スリットを用いた実験とひび割れを用いた実験の 2種類を行った。以下にその概要を示す。

3.1 スリットを用いた測定精度検証実験

まず,ひび割れ幅が制御でき,どの位置でもひび割れ 幅が一定となるスリットを用いて,棒形スキャナの測定 精度の検証実験を実施した。検証実験の方法を以下に示 す。

- (1)コア抜き機を用いて供試体(断面:150×150mm,高
 さ:300mm)の断面中央にφ25mmの孔を削孔する。
- (2)削孔した供試体をコンクリートカッターにより,削孔 した孔に直角となるように2等分する。
- (3)2 等分したコンクリート供試体の切断面を研磨剤で磨 き、2 つの供試体面が密着するようにする。
- (4)2 つの供試体の間にスペーサ(0.5mm, 1.0mm, 1.5mm,
 2.0mm, 2.5mm, 3.0mm)を挟むことでひび割れを模した任意の幅のスリットを作成し固定する。
- (5)図-1に示すように棒形スキャナでスリット部分の画 像を読み取り,撮影した画像からスリットのピクセル 数をカウントすることによりスリット幅を求める。

図-1 スリットの状況

3.2 ひび割れを用いた測定精度検証実験

実際に発生したひびわれ幅の測定精度を検証するた めに、写真-3および写真-4に示すような孔軸方向の ひび割れを発生させた供試体(以下,縦ひび割れ供試体 と呼ぶ)と、孔軸と直角方向のひび割れを発生させた供 試体(以下,横ひび割れ供試体と呼ぶ)を準備し実験を 行った。検証実験の方法を以下に示す。

- (1)コア抜き機を用いて供試体(150×150×150mm)にφ
 25mmの孔を削孔する。
- (2) 孔内を水とナイロンブラシで洗浄する。
- (3)コンクリートカッターで孔軸に沿って供試体を切断 し,孔の円周の1/4が見えるようにする。
- (4)ハンマーで供試体を叩き,所定の方向にひび割れを発 生させる。
- (5)ひび割れ幅を 0.5~3.0mm の範囲で,スペーサを挟み 固定する。

(6)棒形スキャナでひび割れ部分の画像を取得する。

- (7)撮影画像からひび割れ部のピクセル数をカウントすることにより、ひび割れ幅を求める。
- (8)比較用にデジタルノギス(0.01mm 読み)によりひび 割れ幅を測定する。

写真-3 縦ひび割れ供試体

写真-4 横ひび割れ供試体

4. 実験結果

4.1 スリットを用いた測定精度検証実験

図-2 には、スペーサ厚と棒形スキャナによる測定値 の関係を示す。スペーサ厚すなわちスリットの幅と棒形 スキャナによる測定値の関係は、回帰式の傾きが1に近 く、また誤差が5%未満であったことから、スリットを 用いた実験では、棒形スキャナは高い精度でスリット幅 を測定できることが分かった。

なお,決定係数が0.9995 とほぼ1に近い値を示してい る。このように1に近い決定係数を得られた理由の一つ は,実験ではコンクリート供試体のスリット面を研磨し, その後スペーサを挟み込み,スリットを作り出している ため,棒形スキャナの画像解析時にスリットの境界面が 明確に認識でき,棒形スキャナによる測定値の精度が高 くなったものと考えられる。

4.2 ひび割れを用いた測定精度検証実験

図-3 にはひび割れを用いた測定精度検証実験の結果 を示す。縦ひび割れ供試体および横ひび割れ供試体いず れの場合においても、回帰式の傾きは1に近く、誤差の 絶対値の平均も0.1mm 程度であったことから、スリット を用いた場合と同様に、棒形スキャナは高い精度でひび 割れ幅を測定できることが分かった。

なお,決定係数が縦ひび割れ供試体で 0.9878,横ひび 割れ供試体で 0.9949 と若干スリットを用いた実験より 小さな値を示しているが,これは,実際のひび割れでは, スリットに比べ境界部が明確ではないことが影響して いるためと考えられる。

5. ひび割れが発生した鉄筋コンクリート構造物の調査 事例

5.1 調査対象構造物の概要および調査目的

調査対象構造物は,**写真-5**に示す佐賀県杵島郡江北 町にある昭和 50 年に建設された築 38 年の鉄筋コンクリ ート構造の排水機場である。コンクリート表面に発生し たひび割れの発生パターンは,**写真-6**に示す様に亀甲 状であることから,本構造物のひび割れの発生原因は, アルカリ骨材反応による可能性が考えられた。そこで, さらに原因究明を行う目的で,コンクリート内部のひび 割れ発生状況の調査を行った。なお,調査対象構造物は, 一部が地中にあったが,掘り返して,地中部に関しても, 調査を行った。

写真-5 調查対象構造物

写真-6 ひび割れ発生状況

5.2 棒形スキャナによる調査概要

原因究明のためには、かぶりより深い位置までコンク リート内部の調査をする必要があり、本調査では深さ 180mm 以上調査することとした。深さ 180mm 以上コア 抜き調査を行うとコアが折れてしまい、コアからは正確 なひび割れ幅などを観察できないため、簡易で精度が良 い棒形スキャナによる調査を実施することになった。 なお、棒形スキャナによる調査箇所は、図-4 に示す 地中部1箇所,地上部2箇所の合計3箇所とした。

図-4 棒形スキャナによる調査箇所

5.3 調査手順

写真-7に棒形スキャナによる調査手順を示す。まず, コア抜き機により直径 25mm の孔を削孔する(写真-7(a))。続いて孔内を水を使ってナイロンブラシで洗浄 する。洗浄後,ドライヤーで乾燥させる(写真-7(b))。 その後,棒形スキャナを孔内に挿入し画像データの取得 し,最後に取得したデータから展開画像を作成した。

(a)削孔状況

(b) 乾燥状況 写真-7 調査手順

5.4 調査結果

写真-8(a)~(c)に棒形スキャナで取得したデータから作成した展開画像を示す。いずれの写真も右側が構造物表面,左側がコンクリート内部となる。図中の点線はひび割れ発生状況を示しており,数字はひび割れ幅を示している。また,本構造物ではかぶり70mmの位置にD19鉄筋が配筋されており,図中の白い線に鉄筋位置を示している。なお、写真の上に表示されているスケールは、調査後に画像合成したものである。棒形スキャナでは、1ピクセルのサイズが常に一定のため、正確に画像合成ができるのも特徴の1つである。

コア抜き調査では、コアが途中で折れてしまうため、 正確なひび割れ幅の測定はできないが、棒形スキャナを 用いれば、コンクリート内部の状況が**写真-8(a)~(c)** に示すように、正確に観察ができる。

いずれの写真においても、コンクリート内部では特徴 的なひび割れ発生状況が確認できる。かぶり部では、コ ンクリート表面と直角に比較的に大きなひび割れが発 生しているが、そのひび割れ幅はコンクリート内部に行 くにしたがい小さくなっており、鉄筋の位置までにしか 達していない。

一方,鉄筋より内側で発生しているひび割れは,かぶ り部と全く異なり,構造物表面と平行に微細なひび割れ が発生しているのが観察できる。また,例えば,写真-8(a)の丸印に示すように,そのひび割れは粗骨材を貫 通しているものもある。

(a) 調査箇所 A

(b) 調査箇所 B

(c) 調査箇所 C 写真-8 棒形スキャナによる調査結果(展開画像)

鉄筋より内部で構造物表面と平行に微細なひび割れ が発生しているのは、アルカリ骨材反応による膨張圧が 鉄筋により拘束されたためであり、かぶり部でコンクリ ート表面と直角方向にひび割れ発生しているのは、膨張 圧により表面からひび割れが発生したためと考えられ る。

鉄筋より深い位置では、**写真-8(a)**の丸印に示すよう に、ひび割れは骨材内部にのみに発生しているケースが 見られるが、モルタルのみに発生しているケースはほと んどない。また、モルタルのひび割れは、ほとんどが骨 材のひび割れと繋がっている。以上のことから、ひび割 れは、まず粗骨材内部から発生した可能性が高いものと 考えられる⁵、

また,例えば,**写真-8**(b)の丸印に示すように,粗 骨材には反応リングのようなものが観察でき,反応リン グの厚さは,1mm以上のものもある。

以上より、コンクリート内部のひび割れ発生状況など からも、本構造物のひび割れ発生原因は、アルカリ骨材 反応である可能性が高いものと判断した。

なお,粗骨材の周りに観察された反応リングについて は,X線蛍光分析により成分分析を実施した。その結果, 粗骨材内部に比べ反応リング部のシリカ成分の割合が 減少していることが判明し,成分分析からもひび割れの 発生原因がアルカリ骨材反応であることが明らかにな った。

以上より, コンクリート表面のひび割れパターンのみ ならず, コンクリートの内部を棒形スキャナで簡易に精 度良く観察することは, 表面よりも多くの情報を入手で きるため, ひび割れ発生原因の究明に極めて有効である ことが分かった。

また,写真-8(a)~(c)に示す展開画像を用いれば, ひび割れの幅,深さをより正確に推定できるため,構造 物の補修計画にそのデータが活用できることも確認で きた。

6. まとめ

本報告では,開発した棒形スキャナのひび割れ幅の測 定精度検証実験と経年劣化によりひび割れが発生した 鉄筋コンクリート構造物を棒形スキャナにより調査し た事例を紹介した。

以下に得られた知見のまとめを示す。

(1)開発した棒形スキャナのひび割れ幅測定精度の検証 実験を実施し、棒形スキャナは高い精度でひび割れ幅 を測定できることを確認した。

- (2)棒形スキャナを用いて、ひび割れが発生している鉄筋 コンクリート構造物の調査を行い、コンクリート内部 の微細なひび割れを観察でき、ひび割れ幅も精度よく 測定できた。
- (3)棒形スキャナによる調査の結果,コンクリート内部に 特徴的なひび割れが発生していることが観察され,対 象構造物のひび割れ発生原因が,アルカリ骨材反応で ある可能性が高いことが分かった。
- (4)今回の調査では、アルカリ骨材反応によるひび割れは、 まず骨材内部で発生し、その後成長する傾向がうかが われた。
- (5)コンクリート表面のひび割れパターンと、棒形スキャ ナによる精度の良いコンクリート内部の展開画像を 組み合わせることにより、より信頼性の高いひび割れ の発生原因推定が可能であることが分かった。

今後は,劣化原因毎のコンクリート内部のひび割れパ ターンのデータを蓄積することにより,劣化原因推定の 精度向上を目指す予定である。

謝辞

調査を実施するにあたり、国土交通省九州地方整備局 武雄河川事務所のご協力を頂きました。ここに記して深 く謝意を表します。

参考文献

- (社)日本コンクリート工学協会:コンクリートの 診断技術'09【基礎編】,(社)日本コンクリート工学 協会,pp.7-21,2009.2
- (社)日本コンクリート工学協会:コンクリートの ひび割れ調査,補修・補強指針-2009-,(社)日本コ ンクリート工学協会, pp.45-60, 2009.3
- 原田耕司,伊藤幸広,宮本則幸:棒形スキャナによるコンクリート構造物検査技術の開発,西松建設技報,Vol.32, pp.97-98, 2009.6
- 宮本則幸,伊藤幸広:コンクリート構造物の内部調 査技術, Journal of Civil Engineering, pp.85-87, 2011
- 5) (社)日本コンクリート工学協会:作用機構を考慮 したアルカリ骨材反応の抑制対策と診断研究委員 会報告書, pp.10-11, 2008.9