論文 水路コンクリートの摩耗の進行と粗骨材の脱落に関する実験的研究

長谷川 雄基*1・崔 萬權*2・佐藤 周之*3・野中 資博*4

要旨:本研究では、水路コンクリートにおける詳細な摩耗の進行過程、および摩耗の進行により粗骨材の脱 落が生じる条件について検討した。サンドブラストを使用し、コンクリート供試体の表面に摩耗状態を再現 することで、摩耗の進行によるコンクリート表面の状態変化を実験的に評価した。結果として、コンクリー トの表面粗さ指標と粗骨材最大寸法との関係性に着目することで、粗骨材の脱落開始時期を推定できる可能 性を示した。摩耗の進行に伴うコンクリート表面粗さの経時的な変化を確認したところ、表面粗さの増加は 実水路の流水抵抗増加の要因の一つになり得るが、水路部材としての通水性への影響は小さいと推察できた。 キーワード:水路コンクリート、すりへり、摩耗、表面粗さ、サンドブラスト、通水性能

1. はじめに

常に流水環境下で供用される農業用水路コンクリート の喫水位(最多頻度流量時の水位)以下の壁面では、主 に流水および混入土砂の摩耗作用によるすりへりが進行 する。2007年制定版コンクリート標準示方書「維持管理 編」では,すりへりが初めて劣化として位置づけられた。 以降、摩耗はすりへりという劣化の一作用要因として位 置付けられている¹⁾。一方,対象を農業水利コンクリー ト構造物に限定した既往の研究や書籍、マニュアル類で は、摩耗を劣化の一つとして位置づけ、摩耗による劣化 が進行すると断面欠損による構造耐力の低下につながる ことを指摘している^{2),3)}。このように,コンクリートに 生じるすりへりおよび摩耗という現象をどのように取扱 うかは、すりへりが問題となる構造物ごとの劣化機構を 詳細に解明した上で、議論を重ねる必要があると考えら れる。このような背景を踏まえ、本論中では水路コンク リート表面の粗さの状態変化全般を摩耗と定義する。

現在までに、水路コンクリートに生じる摩耗の劣化度 評価を行う際の定量的な評価指標ならびに測定方法は規 定されていない。既往の研究において検討された摩耗に よる劣化度の評価指標および測定機材を表-1 に整理す る。いずれの指標も、摩耗による劣化度の評価指標とし て適用できる、という一定の成果を得ている。しかしな がら、これらの指標は、あくまでも表面状態の変化を評 価するものであり、通水性能を初めとする諸性能の評価 や劣化段階を区分・推定するためには、今後さらに検討 が必要である。また、効果的な劣化度診断の実施には、 評価対象とする現象や性能に適した簡易かつ合理的な評 価指標を選定し、規定する必要がある。

水路コンクリートでは、摩耗の進行により、鋼材露出

*1 愛媛大学大学院 連合農学研究科 修士 (学生会員)
*2 慶尚大学校 農業生命科学研究員 博士 (農学) (非会員)
*3 高知大学 農学部 准教授 博士 (農学) (正会員)
*4 島根大学 生物資源科学部 教授 農学博士 (正会員)

表-1 既往研究における主な摩耗の劣化度の評価指標

評価指標	主な測定機材
断面曲線の最大高さ $R_z^{4)}$ 断面曲線の算術平均粗さ $R_a^{4)}$ 表面凹凸の屈曲線の延長÷水平長さ ⁵⁾	型取りゲージ レーザー変位計
型取りゲージ水平幅の骨材浸食面積 5	型取りゲージ
粗骨材露出割合 ⁶	デジタルカメラ
表面積比 7)	三次元画像解析ソフト
摩耗深度 5)	ノギス

を含めた構造性能の低下に至るケースは報告されていな いものの,水路の基本的な性能の一つである通水性能の 低下を引き起こす場合が懸念されるため,正確な劣化度 評価が必要とされている。先に挙げた示方書では,すり へりによる劣化の進行過程を四段階で区分しており,最 終段階に該当する劣化期においては,粗骨材の脱落が進 行し,断面欠損が著しく構造性能の低下を引き起こす, としている¹⁾。一方,実供用下にある水路コンクリート の摩耗の進行を詳細に評価した報告は少ない。とくに, 摩耗の進行を詳細に評価した報告は少ない。とくに, 摩耗の進行した結果,粗骨材の脱落に至ったケースを報 告している例は皆無である。つまり,現状では,実環境 下で摩耗の進行により粗骨材が脱落する条件や,摩耗に よる表面状態の変化が通水性能におよぼす影響は明確に されていないといえる。

本研究では、水路コンクリートにおける詳細な摩耗の 進行過程および粗骨材の脱落が生じる条件について実験 的に検討した。とくに、サンドブラストを使用し、摩耗 によるコンクリート表面の状態変化の再現を試みた。こ れにより、水路コンクリートにおいて粗骨材の脱落が生

粗骨材の	スランプ	水セメント比	空気量	細骨材率		単	间位量 (kg/m	1 ³)	
最大寸法 (mm)	(cm)	(%)	(%)	(%)	水 W	セメント C	細骨材 S	粗骨材 <i>G</i>	混和剤 <i>A</i>
20	5.1	55	4.3	47.8	194	353	770	854	0.11

表-2 摩耗状態の再現実験用のコンクリート供試体の示方配合

じる条件を検証するとともに、摩耗の進行によるコンク リート表面の状態変化と通水性能との関係性を評価した。

2. 実験の概要

2.1 サンドブラスト法による摩耗状態の再現方法の検討

本研究では、摩耗の進行による表面状態の経時的な変 化を詳細に評価するため、コンクリート供試体の表面に 対して摩耗状態の再現を試みた。水利コンクリート構造 物に生じる摩耗現象を再現するための試験方法について は、石田(2007)がまとめているように、古くから多く の研究が為されている⁸⁾。とくに、流体エロージョンの 作用を主とした試験として、海外ではASTMC418なら びに C 1138 が規格化されている。一方, 国内では流体エ ロージョンの作用を主とした試験方法で規格化されたも のはないが、石神ら(2005)は、高圧水流を供試体に噴 射することで、水の衝撃作用により摩耗現象を再現する 水噴流摩耗試験装置を開発した 9)。長束ら(2010)は、 珪砂を混入した高圧水を供試体に噴射することで、水の 衝撃作用に加え、珪砂によるすり磨きおよび衝撃作用に より摩耗現象を再現する水砂噴流摩耗試験機を開発した 10)。これらの試験は、水路コンクリートの実現象に近い 摩耗状態を再現することが可能とされるが、各々専用の 試験装置が必要となる。

そこで、本実験においては、先述の ASTM 規格に準拠 したサンドブラスト法を適用し、サンドブラスト装置(株 式会社不二製作所, FDO-F1-F)を使用して摩耗状態の再 現を試みた。本手法は、供試体に対して高圧(吐出圧力 0.5MPa一定)で研磨材を噴射するものであり、硬質な研 磨材による衝撃およびすり磨きの作用により、きわめて 短時間でモルタル部を消失させることができる。上述の 石神らや長束らの提案した各種試験方法と摩耗の発生機 構が同一であり、露出した粗骨材の形が概ね残ることか ら、本手法によっても水路コンクリートに生じる摩耗状 態を再現可能と判断した。研磨材には、粒度範囲 425~ 500µm、モース硬度 12 のアルミナ製研磨材を使用した。

摩耗状態の再現実験に供したコンクリート供試体の 示方配合を表-2 に示す。使用した材料は,普通ポルト ランドセメント,水道水,高知県産砕砂(表乾密度 2.60g/cm³,吸水率 1.58%),高知県産砕石(表乾密度 2.60g/cm³,吸水率 1.33%), AE 減水剤(ポゾリス No.70)

表-3 対象とした PCS の詳細

砕石サイズ	骨材粒径	空隙率	
5号	13.0~20.0mm	22.3%	
6 문	$5.0 \sim 13.0$ mm	22.2%	
05	5.0 - 15.01111	25.7%	
		18.9%	
7号	2.5~5.0mm	20.5%	
		22.7%	

砕石サイズ:5号 砕石サイズ:6号 砕石サイズ:7号 図ー1 砕石サイズごとの PCS の一例

である。コンクリート供試体は,幅150mm×長さ215mm, 厚さ50mmの型枠に打設した。打設後24時間は乾燥を 防ぎながら室温20℃の室内に静置し,脱型後に室温20℃ 一定で材齢3日まで気中養生を行った。その後,初期状 態の表面粗さを測定し,再現実験を開始した。本実験で は、とくに摩耗の進行による粗骨材の露出から脱落に至 る過程の詳細評価を目的としていることから,効率的に 上記の表面状態を得るために早期材齢(3日)にて試験 を開始した。再現実験は,供試体に対して60秒程度満遍 なく研磨材を噴射した。目視にて表面状態の変化を確認 しながら,表面粗さの測定と研磨材の噴射とを交互に繰 り返した。

2.2 ポーラスコンクリートの表面状態と摩耗が進行した 水路コンクリートの表面状態との相似性の評価

本研究では、コンクリート表面からの粗骨材の脱落条 件を評価するために、まず各種ポーラスコンクリート供 試体(Porous Concrete Specimen 以下, PCS)を対象とし て基礎的な検討を行った。普通コンクリートは連続粒度 の骨材が使用され、粗骨材同士の間にできる空隙にモル タルが隙間なく充填されている。一方、PCS はほぼ等し い粒径の骨材のみが使用され、その周りに結合材をまぶ すことで、骨材同士が接点に近い状態で接合されている。 すなわち、PCS は多孔質であり、普通コンクリートと比 較して表面が粗いという性質を有する。このことから、 水路コンクリートにおいて、摩耗の進行により粗骨材が ほぼ完全に露出した状態を PCS の表面状態に近いもの と仮定し、表面粗さを実測することで、上記仮定が成立 するかを含めて検証した。

実験には、砕石サイズおよび空隙率が異なる六種類の PCS を用いた。使用した PCS の詳細を表-3 に、砕石サ イズごとの PCS の表面状態を例として図-1 に示す。供 試体は 230mm×230mm、厚さは 60mm の直方体である。 2.3 表面粗さの測定方法および評価対象とした粗さ指標

摩耗による劣化度評価には、表面粗さを定量的に示す 必要がある。本研究では、表面粗さの測定機材として、 レーザー変位計(株式会社 KEYENCE,高速・高精度 CCD レーザー変位計LK-G155)を使用した。同機器の精度は 0.01mm である。レーザー変位計により、0.2mm 間隔で 供試体の断面曲線を実測し、計測した曲線に対して傾斜 補正を施した。得られた断面曲線から表面粗さを示す指 標を算出した。供試体ごとの断面曲線の取得本数は、深 い空隙を有し、表面凹凸が著しいPCS については40本、 コンクリート供試体については 150mm の幅に対して 25mm ごとに5本とした。

表面粗さの指標としては、断面曲線における最大高さ (断面曲線の平均線に対して最も高い山頂と最も深い谷 の和) R_z ならびに算術平均粗さ(断面曲線の平均線から の差の絶対値を平均した値) R_a を検討した。 R_z と R_a の 概念図を図-2に示す。両指標は、JIS B0601 (2001)(表 面性状:輪郭曲線方式)にて概念が規定されており、表 -1に示した粗骨材露出割合や表面積比といった、他の 評価指標とも高い相関関係が確認されている^{6,7}。また、

初期状態 測定1回目

粗骨材の脱落開始 測定4回目

粗骨材の露出開始 測定2回目

粗骨材の脱落が進行 測定5回目

図-2 対象とした表面粗さ指標の概念図

後述する通水性能の指標として用いられる Manning の粗 度係数と関連付けることができ,現時点では摩耗による 劣化度を評価する上で,最も汎用性の高い指標である。

3. 結果と考察

3.1 サンドブラストによる摩耗状態の再現性の評価

サンドブラストを用いて、コンクリート供試体に実水 路コンクリートの摩耗状態を再現したところ、図-3 に 示す結果が得られた。すべての写真を俯瞰すると、以下 のような表面状態の変化が確認できる。まず、初期状態 である平滑面からモルタル部の消失および粗骨材の露出 が発生する(測定1~2回目)。続いて粗骨材の露出が著 しくなり、粗骨材の脱落に至る(測定3~4回目)。コン クリート表面に対して満遍なく粗骨材の脱落が生じた後 に、さらに深さ方向に位置する粗骨材が露出する(測定 5~6回目)、というものである。

コンクリート標準示方書「維持管理編」における,一 般的なすりへりの劣化過程に鑑みると,これらの表面状 態の変化は,実水路コンクリートにおける摩耗の進行過 程と同様である。したがって,サンドブラストを使用す

粗骨材の露出が進行 測定3回目

表層の粗骨材の脱落後 さらに摩耗が進行 測定6回目

ることで、実水路に生じる摩耗状態を概ね再現できてい ると考えられた。しかしながら、今後、本手法を水路コ ンクリートおよび補修材料の耐摩耗性を評価するための 試験方法として広く適用するためには、より詳細な検討 が必要である。例えば、前述したように、本手法はセメ ントペーストおよび骨材と比較して硬質な研磨材を使用 するものであり、試験をとおして、露出した粗骨材自体 が摩耗し、目視にて僅かながら丸みを帯びていることを 確認した。一方、上述の石神らや長束らの報告では、露 出した骨材の状態については明示されていない。よって、 サンドブラストを使用した場合の摩耗機構と現在提案さ れている各種試験方法や実水路コンクリートにおける摩 耗機構との整合性について詳細に検証する必要がある。 3.2 PCS とコンクリート供試体との表面状態の比較検討

PCS の表面状態と摩耗が進行した水路コンクリートの 表面状態との相似性について検証する。各種 PCS および コンクリート供試体における表面粗さの測定結果を表-4、5 にそれぞれまとめる。 $R_z \ge R_a$ に加え、 R_z の平均値 を供試体の最大骨材寸法 G_{max} で除した値である R_z/G_{max} を算出した。

全体として、PCS の *R*_zおよび *R*_aはともに砕石サイズ の大きさに比例して増加傾向にあることがわかる。また、 算出した表面粗さが PCS の種類ごとに異なることから、 各 PCS が異なる表面状態を有することが定量的に確認 できる。一方、コンクリート供試体についても、それぞ れの表面状態ごとに粗さ指標の数値は異なることから、 摩耗の進行に伴い表面粗さが変化していることがわかる。

コンクリート供試体において算出した表面粗さ指標と 各種 PCS の表面粗さ指標とを比較すると,数値上では, 7 号砕石を使用した PCS の表面状態が粗骨材の露出が生 じた表面状態(測定 3 回目)と近いことがわかる。また, 5 号および 6 号砕石を使用した PCS の表面状態は粗骨材 の脱落が生じている表面状態(測定 4 回目以降)と近し いことがわかる。以上のことから,表面粗さの数値のみ からの判断ではあるが, PCS の表面状態と粗骨材の露出 あるいは脱落が生じた水路コンクリートの表面状態とが 近しい状態と見なせると判断し,以降の検討を進めた。

3.3 水路コンクリートにおける粗骨材の脱落条件の検討(1) 実水路における粗骨材の脱落メカニズム

実水路コンクリートにおける粗骨材の脱落メカニズム について検討する。なお、本研究における粗骨材の脱落 とは、最大骨材寸法の粗骨材が脱落することと定義する。 本実験では、基本的にサンドブラストのみを使用してコ ンクリートの摩耗を再現した。しかし、測定4回目の状 態から測定5回目の状態へ移行する際に、サンドブラス トによる研磨作用のみでは全面に渡る粗骨材の脱落を再 現できなかったため、露出した粗骨材に対して工具を用

表-4	PCS の表面粗さの測定結果
-----	----------------

PCS の種類		R_z (mm)	R_a (mm)	$R_z/G_{\rm max}$	
5号22.3%	平均值	16.07	3.01		
	標準偏差	4.01	0.76	0.80	
6号22.2%	平均值	9.16	1.50	0.50	
	標準偏差	2.82	0.48	0.70	
6号25.7%	平均值	10.18	1.70	0.50	
	標準偏差	2.29	0.34	0.78	
7号18.9%	平均值	3.70	0.50	0.74	
	標準偏差	0.86	0.12		
7号20.5%	平均值	3.10	0.38	0.62	
	標準偏差	0.73	0.13	0.62	
7 8 22 70	平均值	3.92	0.58	0.70	
7亏22.7%	標準偏差	0.94	0.17	0.79	

表-5 コンクリート供試体の表面粗さの測定結果

測定回		R_z (mm)	R_a (mm)	$R_z/G_{\rm max}$
1回目	平均值	0.32	0.04	0.02
	標準偏差	0.19	0.01	0.02
2回目	平均值	2.28	0.33	0.11
	標準偏差	0.52	0.06	0.11
3回目	平均值	4.52	0.90	0.22
	標準偏差	1.33	0.28	0.23
4回目	平均值	17.55	4.22	0.00
	標準偏差	3.45	0.60	0.88
5回目	平均值	10.56	2.19	0.52
	標準偏差	1.91	0.71	0.53
6回目	平均值	15.06	3.41	0.75
	標準偏差	3.91	1.03	0.75

いて人為的に衝撃を与え,脱落を進行させた。つまり, 本研究の結果からは,摩耗という単一の劣化現象のみで は,粗骨材の脱落が生じにくいと推察された。

ここで、長期供用された水路コンクリートの摩耗の進行には、流水と混入土砂による物理的な外力の作用に加 え、カルシウム溶脱によるセメントペーストの脆弱化が 大きく影響することが知られている¹¹⁾。また、水路コン クリートにおいて粗骨材露出が進行すると、露出した粗 骨材により摩耗の進行速度が低減されるという報告があ る¹²⁾。つまり、実環境下の水路コンクリートでは、粗骨 材露出が著しくなると、溶脱により粗骨材周辺部のセメ ントペーストが徐々に脆弱化し、脆弱部に物理的な作用 が継続的に加わることで、粗骨材の脱落が生じると考え られる。例えば、下水道施設に使用されるコンクリート では,酸,無機塩類,腐食性ガスなどの化学的侵食によりセメントペーストの脆弱化が速やかに進行し,粗骨材の脱落に至ることが知られている¹³⁾。

以上より,実環境下の水路コンクリートにおいては, 摩耗のみでは粗骨材の脱落は生じ難く,溶脱を始めとす る他の要因が複合的に影響していることが確認できた。

(2) 粗骨材の脱落時期の推定

水路コンクリートにおける粗骨材の脱落開始時期の 定量的な推定を試みた。まず,各種 PCS における R_z/G_{max} に着目すると、すべての供試体において R/Gmax は 0.71±0.09 と一定の範囲内になることがわかる。とくに、 一般的に水路コンクリートに使用される最大粗骨材寸法 と同程度の大きさである 5 号砕石を使用した PCS の R_z/G_{max}は 0.80 となった。通常,水路コンクリートにおい て、摩耗により生じた表面粗さの最大深さが使用した粗 骨材の最大寸法を超えると, 粗骨材の脱落が始まると考 えられる。すなわち, R_z/G_{max}が1を超えると粗骨材の脱 落が始まる。一方,前節で述べたように,本論では PCS の特性を踏まえ、PCS の表面状態を摩耗の進行により骨 材が露出あるいは脱落した状態と仮定している。この仮 説が成り立つとすれば, 普通コンクリートにおいて, 摩 耗の進行によりコンクリートの表面が PCS に近い状態 になると、粗骨材とモルタル部の接点がほとんどないた め、粗骨材の脱落が生じると考えられる。したがって、 実環境下における水路コンクリートで R_z/G_{max}=0.80 に近 しい値となる場合には、粗骨材の脱落が生じる状態であ り, R_z/G_{max}=0.80 を粗骨材の脱落が開始する閾値として 使用できる可能性が考えられた。

上記結果を踏まえ、コンクリート供試体における R_z/G_{max} に着目すると、PCSを対象とした測定により得ら れた R_z/G_{max} =0.80という値に近しい結果となったのは、 測定4回目および測定6回目の2条件であった。両条件 とも、部分的に粗骨材の脱落が生じている状態である。 一方、測定5回目も粗骨材の脱落が生じているものの、 コンクリート表面のほぼ全面にわたり粗骨材の脱落が生 じた結果、表面の粗さ自体は小さかったため、 R_z/G_{max} も 小さくなったと考えられた。

以上のことから、摩耗による劣化が生じた水路コンク リート壁面の劣化度診断および劣化予測を行う上で、 *R*_d/G_{max}=0.80を指標として粗骨材の脱落が開始する時期 を推定できることが明らかとなった。しかしながら、本 検討は PCS の表面状態が摩耗の進行したコンクリート の表面状態に近い状態であることを、粗さ指標のみに着 目して仮定した結果である。また、脱落の対象とする粗 骨材の最大寸法は 20mm に限定している。よって、上記 の指標が実水路において広く適用可能か否かは、今後の データ蓄積をとおして明確化する必要がある。

図-5 コンクリート供試体の R_aの経時変化

4. 摩耗の進行と通水性能との関係性の評価

本章では、これまでに得られた実験結果を踏まえ、摩 耗の進行と通水性能との関係性について考察する。再現 実験より得られた、各表面状態における *R*_zと *R*_aの算出 結果を図-4、5 にそれぞれ示す。

両図の段階的な変化は同様の傾向を示しており,摩耗 が進行すると,粗骨材の露出が進行するまでは表面粗さ が緩やかに増加する。そして,部分的に粗骨材の脱落が 確認される状態になると,表面粗さは著しく大きくなり, 粗骨材の脱落が全面的に広がると,表面の平滑性が回復 し,表面粗さは小さくなる。その後は,再度の粗骨材露 出および脱落を繰り返し,それに応じて表面粗さが同様 の変化をすると推察できる。

水路の通水性能は、流水と壁面とが直接接することに 由来することから、摩耗の進行に伴う表面粗さの変化と 強い関係性を有するとされる。一般に、通水性能を評価 する際には、Manningの平均流速公式における粗度係数 が指標となる。**図ー4、5**を考慮すると、粗度係数は表面 粗さ指標の増減に対応して、同様の傾向で増減すると考 えられる。中矢ら(2008)は、供用期間40年の摩耗状態 に相当する模擬摩耗版による水理模型実験の結果から、 R_z ならびに R_a と粗度係数n ($s/m^{1/3}$)との関係式を以下 の式(1),(2)のように提案した¹⁴⁾。 $n = 0.042 \times (0.26 \times R_z)^{1/6} \tag{1}$

 $n = 0.042 \times (2 \times R_a)^{\frac{1}{6}}$ (2)

上式は実験式であり、適用範囲はそれぞれ $R_z=4.0 \pm 1.43$ mm, $R_a=0.5 \pm 0.12$ mm とされる。再現実験を実施したコンクリート供試体のうち、適用範囲内となったのは 測定3回目から得られた R_z のみであったため、本検討では同結果について上式を適用して試算した。

結果として、算出した粗度係数は 0.014 となり、現場 打ちコンクリートフルームの設計基準値である 0.012~ 0.016 の範囲内となった。よって、一見すると、測定 3 回目の表面状態程度であれば、粗骨材が露出して表面粗 さが増加したとしても,水路部材として通水性能にはほ とんど影響をおよぼさないといえる。しかし、ここで注 意せねばならないことは、粗度係数を性能指標とした通 水性能の評価手法そのものについてである。今回得られ た結果は、あくまでも水路の表面粗さの影響のみを反映 する実験式に着目した評価結果である。一方、実水路に て推定する粗度係数には、水路の表面粗さの影響のみな らず、水路の湾曲や断面形状、水路内の植生や土砂の堆 積などといった、多くの流水抵抗となりうる要因の影響 が含まれる。加えて、前述したように、対象としたコン クリート供試体の摩耗状態は、サンドブラストにより再 現したものであり、その再現性についてはさらに検討を 進める必要がある。以上のことから、今後は実水路を対 象として、表面粗さの変化と通水性能との関係性をさら に検証するとともに、通水性能の評価方法そのものにつ いても検討することが必要と考えられた。

5. まとめ

本論では,水路コンクリートにおける詳細な摩耗の進 行過程および粗骨材の脱落条件を実験的に検証した。本 研究で得られた成果を以下にまとめる。

- (1) サンドブラスト法を適用することで、摩耗が生じた 実水路コンクリートの表面状態を概ね再現可能と 考えられた。
- (2) 摩耗が生じた水路コンクリート壁面の劣化度診断 および劣化予測を行う上で, *R_z*/G_{max}=0.80 を指標と して粗骨材の脱落開始時期を推定できる可能性が 示された。
- (3) 粗骨材の露出により表面粗さが増加した供試体に 対して、実験式を適用して粗度係数を推定したところ、粗度係数は設計基準値の範囲内となった。

謝辞

本研究の一部は、科研費(23380143)の助成を受けたもの

である。記して感謝の意を表します。

参考文献

- 土木学会 コンクリート委員会編:2013年制定コン クリート標準示方書「維持管理編」,社団法人 土 木学会, pp.250-263, 2013.10
- 2) 農林水産省農村振興局編:農業水利施設の長寿命化のための手引き, p.6, 2011.5
- 中 達雄,高橋順二編:農業水利施設のマネジメン
 ト工学,養賢堂,pp.119-123,2010
- 加藤 敬,本間新哉,北村浩二,今泉眞之:開水路 における壁面の凹凸から水路の粗度係数を求める 試み,農村工学研究所技報, Vol.207, pp.183-193, 2008.3
- 5) 北村浩二,本間新哉,今泉眞之,加藤 敬:農業用 水路の壁面の摩耗劣化と継目劣化の予測,農業農村 工学会論文集, Vol.76, No.2, pp.123-134, 2008.4
- 加藤智丈,石神暁郎,渡嘉敷 勝,森 充広:農業 用水路に生じる摩耗に関する調査手法,コンクリー ト工学年次論文集, Vol.31, No.1, pp.931-936, 2009
- 7) 長谷川雄基,太田垣晃一郎,佐藤周之,野中資博: すり減りが生じたコンクリート水路の劣化度診断 に関する研究,コンクリート工学年次論文集, Vol.34, No.2, pp.1423-1428, 2012
- 石田知子:水理構造物のコンクリートの摩耗評価に 関する試験方法の現状、コンクリート工学、Vol.45、 No.3、pp.50-54、2007.3
- 石神暁郎,森充広,渡嘉敷勝,増川晋:農業用水路 コンクリートに生じる摩耗現象と促進試験方法に 関する検討,コンクリート工学年次論文集, Vol. 78, No. 2, pp. 805-810, 2005
- 10) 長束勇,上野和広,渡嘉敷勝,石井将幸:水砂噴流 摩耗試験機の試作とその性能評価,農業農村工学会 論文集, Vol. 78, No. 2, pp. 89-95, 2010.4
- 11) 森充広, 渡嘉敷勝, 山崎大輔, 加藤智丈:長期供用された農業用水路のコンクリート通水表面の変質, コンクリート工学年次論文集, Vol.31, No.1, pp.919-924, 2009
- 上野和広,長束勇,石井将幸:開発した水砂噴流摩
 耗試験機の促進倍率,農業農村工学会論文集 Vol.78, No.2, 2010.4
- 13) 和泉意登志:コンクリートの劣化と補修がわかる本, セメ ントジャーナル社, pp.76-81, 2009
- 14) 中矢哲郎,渡嘉敷勝,森 充広,森 丈久:摩耗したコンクリート水路表層形状からの粗度係数推定
 手法,農業農村工学会論文集,Vol.76,No.6,pp.
 501-506,2008.12

-741-