論文 飛来塩分が到達するコンクリートの表面塩分量に関する現地観測と 数値解析

中村 文則*1・生田 麻実*2・下村 匠*3・細山田 得三*4

要旨:海域から発生した飛来塩分の到達量とコンクリート表層部に浸透する表面塩分量の現地観測を行った。 さらに,飛来塩分の輸送過程の3次元数値シミュレーションモデルを用いて,コンクリート表層部に浸透す る表面塩分量を予測する手法について検討した。その結果,飛来塩分捕集箱で測定した到達塩分量とモルタ ル供試体に浸透した表面塩分量は,比例的な関係あることが明らかになった。飛来塩分の輸送過程の数値モ デルを用いて計算を実施することにより,コンクリート表層部に浸透する塩分量を予測できることが示され た。

キーワード:飛来塩分,塩害,表面塩分量,到達塩分量

1. はじめに

海岸近傍では,海水面から発生した飛来塩分が風によ って輸送され,コンクリート構造物の壁面表面に到達し, 構造物中の鉄筋を腐食させるため問題となっている。そ の対策として,構造物の劣化進行状況を予測することが 重要であり,既往研究で劣化の原因となるコンクリート 内部の塩分の浸透および移動解析の研究が行われている。

このような解析を行うためには、その境界条件となる コンクリート表層部の浸透塩分量を適切に設定すること が重要である。その有効的な方法として、以下のような (1)~(3)の各過程を統合的に組合せた計算モデルを用い て予測する方法が挙げられる。

- 波浪から発生する飛来塩分の発生、地形条件、構 造物周辺の風速分布を考慮した飛来塩分の輸送
- (2) コンクリート表面への飛来塩分の到達
- (3) コンクリート表層部への塩分の浸透

既往研究では、山田ら^{1),2)},田中ら³⁾が(1)および(2)に 関して数値シミュレーションモデルを開発し、数値計算 で精度良く再現できることを報告している。(3)について は、ソーンウィーラら⁴⁾がコンクリート表面と内部での 塩化物イオンの移動特性を考慮したモデルを提案してお り、青木ら⁵⁾が実験室内の理想的な環境において実施し た実験とその数値解析の結果を報告している。しかしな がら、実際のコンクリート橋の各部位に観測点を設置し、 (2)の到達塩分量および(3)のコンクリート内部へ浸透す る塩分量を同時に観測した例は少なく、数値モデルで(1) ~(3)の過程を統合的に再現した例はない。

本論文では,新潟県に位置する2箇所のコンクリート 橋を対象に,到達塩分量とコンクリート表層部の浸透塩 分量に関する現地観測を実施し、その関係について検討 を行った。さらに、飛来塩分の輸送過程の3次元数値モ デルを用いて、コンクリート表層部に浸透する塩分量を 予測する方法について検討を行った。

なお、本論文で用いている表面塩分量は、薄型のモル タル内部へ浸透した平均的な塩分量であり、コンクリー ト表層部に浸透する塩分量を意味している。

2. 現地観測

2.1 観測場所および観測期間

観測期間は2006年2月25日から2007年3月3日の1 年間である。観測場所は、図-1に示すような新潟県上 越と中越地方に設置されている名立大橋、出雲崎夕日ラ イン橋の2箇所で実施した。名立大橋を観測地点1、出 雲崎夕日ライン橋を観測地点2とした。観測場所とした 新潟県は、冬季に季節風の作用により、気象・海象条件 が厳しく、大気中の飛来塩分量が大きくなる特徴がある。

*1 明石工業高等専門学校 都市システム工学科助教 博(工) (正会員) *2 明石工業高等専門学校 技術教育支援センター技術職員 修(工) (正会員) *3 長岡技術科学大学 工学部環境・建設系教授 博(工) (正会員) *4 長岡技術科学大学 工学部環境・建設系教授 博(工)

図-2 現地観測器具の設置例

(a) 観測地点1(名立大橋)

図-3 現地観測点の配置

2.2 観測方法および観測点の配置

現地観測は、コンクリート橋に到達する塩分量を示し た到達塩分量、コンクリート表層部へ浸透する塩分量を 示した表面塩分量の2つの項目について実施した。到達 塩分量は、図-2のような飛来塩分捕集箱を用いて、捕 集板に到達した塩分を降水とともに捕集箱内のタンクに 収集し、そのタンク内の塩分量を測定して求めた。測定 試料の回収および分析は、1ヶ月間隔で観測期間中に13 回実施した。

表面塩分量は、図-2の左側のような直径 10cm,厚さ 1cmのモルタル供試体を設置し、そのモルタル供試体に 含まれる塩化物イオン濃度を測定し、その後、単位重量

表-1 モルタル供試体の暴露期間

地点	回収順	暴露期間		暴露時間
		設置	回収	月(day)
観測 地点1	第1回	2006年3月8日	2006年9月25日	7ヶ月(200)
	第2回	2006年3月8日	2007年1月17日	10ヶ月(314)
	第3回	2006年3月8日	2007年3月3日	12ヶ月(357)
	第4回	2007年1月17日	2007年3月3日	1.5ヶ月(43)
観測 地点2	第1回	2006年2月25日	2006年9月29日	7ヶ月(216)
	第2回	2006年2月25日	2006年1月17日	10ヶ月(326)
	第3回	2006年2月25日	2007年3月3日	12ヶ月(368)
	第4回	2007年1月17日	2007年3月3日	1.5ヶ月(43)

(a) 海側の測点 No. 1-1 および No. 2-1

当たりの塩分量に変換を行った。モルタル供試体の回収 は, 表-1のように暴露期間が 1.5, 7, 10, 12 ヶ月間と なるように 4 回実施した。

観測点の配置は,観測地点1の名立大橋で図-3(a)に 示す3点とそこから沿岸方向に100m程度離れた測点 No.1-4を配置し,観測地点2の出雲崎夕日ライン橋では 図-3(b)のように海側と陸側の2点を配置した。測点 No.1-2以外は,降雨が直接当たるような場所である。測 点No.1-2は,観測器具の設置の関係から到達塩分量の観 測が観測開始から1ヶ月間のみであり,2ヶ月目からは 表面塩分量のみの観測とした。飛来塩分捕集箱の捕集板 とモルタル供試体の表面は,内陸側の測点No.1-3および No.2-2の2点では内陸方向に,その他の測点では海側方 向に向くように設置した。

2.3 観測結果および考察

(1) 到達塩分量の観測結果

海側の測点 No.1-1 および No.2-1 における到達塩分量 の観測結果を図-4 に示す。図に示す通り,観測地点 1 および 2 の到達塩分量は,2006 年 5~9 月の夏季に小さ く,それ以外の期間で大きくなっている。観測地点 1 と 2 の塩分量を比較した場合では,観測地点 1 のほうで塩 分量が大きくなっている。これは,観測地点 1 では,飛 来塩分の発生源となる波の砕波帯が測点に近く,構造物 周辺の塩分量が大きくなっているためと考えられる。

内陸側の測点 No.1-3 および No.2-2 における到達塩分 量を示したものが図-4(b)である。図に示す通り,内陸 側の測点の到達塩分量は,海岸側の測点と同様に冬季に 到達する塩分量が大きくなる傾向がある。

2006年3月8~28日までの20日間に観測地点1にお ける各測点の到達塩分量を比較した値を図-5に示す。 図に示すように、到達塩分量は海側の測点No.1-1で大き く、内陸側の測点No.1-3で小さくなっており、2つを比 較した場合では内陸側の塩分量が海側の1/16程度にな っている。内陸側の測点の塩分量が最も小さくなってい る理由としては、飛来塩分の発生源から最も離れている ことに加えて、飛来塩分捕集箱の捕集板が内陸側へ向い ており、海側から飛来してくる塩分が到達しにくい状況 であることが挙げられる。

(2) 表面塩分量の観測結果

暴露時間を変化させて回収したモルタル供試体に含ま れる塩分量の測定結果を図-6 に示す。図-6(a)は観測 地点 1,図-6(b)は観測地点 2 の各測点における表面塩 分量である。横軸の括弧内は暴露期間である。

図に示す通り,同時に設置した第1~3回の表面塩分量 の観測結果は,暴露時間が大きく変化しても塩分量に大 きな変化は見られていない。一方,各測点における表面 塩分量は,海側の測点 No.1-1, 1-2, 2-1 で大きく,内陸 側の測点 No.1-3, No.2-1 で小さい傾向が見られる。

降雨が直接接する測点 No.1-1 と接しない No.1-2 を比較した場合では、測点 No.1-2 のほうで表面塩分量が大き

(0) 観測地点2(山雲崎タロライン橋) 図ー6 表面塩分量の観測結果

くなっている。これは、測点 No.1-2 では、降雨による洗い流しがないため、モルタル供試体表面に塩分が蓄積し、 表面塩分量が大きくなっていると考えられる。ただし、 測点 No.1-2 は降雨が直接接しないが、冬季では結露が激 しく若干の洗い流しが生じる状況であった。

(3) 到達塩分量と表面塩分量の比較

海側の測点における到達塩分量とモルタル供試体の表 面塩分量を整理した結果を図-7 に示す。図の到達塩分 量は、モルタル供試体の暴露期間内に到達した塩分量の 累積値である。

図に示すように、到達塩分量は暴露期間に比例して増 加しており、一方でモルタル供試体の表面塩分量は値に 大きな差が見られていない。これは、表面に到達した塩 分量が降雨によって洗い流されることで、一定の値より 大きくならないためと考えられる。

図-7(a)の2007年1~3月に設置した第4回のモルタ ル供試体では、到達塩分量に対して表面塩分量が小さく なっている。これは、モルタル供試体の暴露期間が短く、 モルタル内部に浸透する塩分量が小さいためであると考 えられる。一方、図-7(b)では、第4回の表面塩分量の 観測結果は、第1~3回の観測結果と同程度の1.3kg/m³ となっている。これらの第4回の観測結果は、測点1-1 と測点2-2で傾向が異なっているが、その原因は分かっ ていないため、今後、観測データを増加し、詳細なメカ ニズムについて検討する必要がある。

これらの結果より、長期的に暴露したモルタル供試体 の表面塩分量は、塩分量が累積していくのではなく、洗 い流されるまでの期間内に到達する塩分量の最大値に大 きく影響を受けていると考えられる。

各測点の表面塩分量とその暴露期間に到達した塩分量 の関係を図-8 に示す。図-8(a)の到達塩分量は暴露期 間中の累積値,図-8(b)は1ヶ月単位の観測結果の最大 値である。図に示すように,表面塩分量は,到達塩分量 の累積値および最大値と比例的な関係があることがわか る。

ただし、図に示す近似曲線は、到達塩分量が 0.0mdd のときに表面塩分量が 0.0kg/m³にならないといった問題 がある。これは、現地観測が到達塩分量の大きい時の条 件を対象に実施しており、観測で塩分量が小さい時の結 果を取得できていないことが原因である。そのため、到 達塩分量が小さい時に、到達塩分量と表面塩分量の関係 がどのようになるか不明であったことから、表面塩分量 が過大となるような設定とした。

以上より,表面塩分量は,到達塩分量の1ヶ月単位の 観測結果の最大値と比例的な関係があることから,年間 で最も塩分が飛来するような気象・波浪条件を設定し, 構造物に到達する飛来塩分量を数値シミュレーションモ デルで計算することで,年間の表面塩分量の傾向を予測 できると考えられる。

3. 数値モデルによる表面塩分量の予測手法の検討

3.1 数值解析方法

本検討に用いた数値モデルは、山田ら¹⁾が開発した 鉛直2次元モデルを3次元に拡張し、風の計算と飛来塩 分の輸送過程の計算を実施した。

(1) 風の場の計算モデル

風の場は、大気を非圧縮性流体と考え、連続式および 運動量方程式の式(1)、(2)で計算を行った。

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(1)
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = - \frac{\partial p}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = - \frac{\partial p}{\partial y} + v_t \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
(2)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} - g_z + v_t \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$

ここで, x, y, zは3次元座標, u, v, wはx, y, z方向 の流速(m/s), tは時間(s), pは圧力(Pa), g_zは重力加速度 (m/s²), ν₁は k- ε 乱流モデルから求められる渦動粘性係 数(m²/s)である。計算では,構造物および地形に応じた3 次元の定常な風の場の計算を実施した。

(2) 飛来塩分の輸送過程の計算モデル

海域から発生した飛来塩分の輸送過程の計算は,式(3) に示す3次元移流・拡散方程式で行った。

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + (w - w_s) \frac{\partial c}{\partial z} = v_t \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} + \frac{\partial^2 c}{\partial z^2} \right)$$
(3)

ここで,wsは飛来塩分の沈降速度(m/s),cは大気中の飛 来塩分濃度(mg/m³)である。計算で求めた塩分濃度cは, 風速を掛け合わせることで飛来塩分の単位時間,単位断 面当たりを通過する輸送量(mg/dm²/day)に変換した。

(3) 飛来塩分の表面塩分量の算出

飛来塩分の表面塩分量は、大気中の輸送塩分量と到達 塩分量が比例していると仮定し、輸送塩分量から構造物 壁面への到達塩分量を算出し、その後、本論文の観測結 果の図-8(b)より、表面塩分量 coを式(4)で計算した。

$$c_0 = ac_{ab}^{2} + bc_{ab} + d (4)$$

ここで, *cab*は到達塩分量, *a*, *b*, *d*は係数でありそれぞれ 0.014, 0.198, 0.811 である。

3.2 計算条件および入力パラメータ

計算領域は 3 次元であり,図-9 のような観測地点 1 の名立大橋周辺の縦200m×横200m×高さ15mの空間とした。計算格子間隔は,1.0m×1.0m×0.5m である。構造物周辺の地形は,国土地理院の 5m メッシュ標高データを 1m 間隔で補間して作成した。

計算に入力した風速条件は,構造物周辺で飛来塩分が 大量に輸送される条件を想定して,山田ら²⁾が実施した 名立大橋での既往の現地観測を参考に,風向が橋脚の側 壁とほぼ平行となる西方向,風速が橋桁周辺で12m/sと なるように設定した。境界での風速の鉛直分布は,建築 指針のの海上の風速条件に示される式(5)の分布を境界で 与えた。

$$u(z) = \begin{cases} u_0 \cdot 1.7(z_b / z_G)^{\alpha} & (z \le z_b) \\ u_0 \cdot 1.7(z / z_G)^{\alpha} & (z_b \le z \le z_G) \end{cases}$$
(5)

ここで, u は境界で入力する水平風速, u_o は基本風速, z_b, z_G, aは係数であり, それぞれ 5, 250, 0.1 である。

飛来塩分の発生量は、仲座ら^っの既往研究を参考に、 波からの飛来塩分の発生過程の計算を行わず、海上で式 (6)の鉛直分布を与えた。

$$c(z) = c_s \exp(-Az) \tag{6}$$

ここで, A は鉛直方向の減衰係数(=0.293), cs は海水面上 での飛来塩分濃度(mg/m³)であり,本計算では海側の測点 No.1-1の到達塩分量の観測結果と計算結果が一致するよ うに設定した。飛来塩分の沈降速度は,仲座ら ⁷⁷を参考 に式(7)のように汀線からの距離に応じて変化させてい る。

$$w_s(x) = w_0 \exp(-Bx) \tag{7}$$

ここで,woは砕波点位置での粒子の沈降速度(=0.06m/s), Bは定数(=0.012)である。

3.3 計算結果および考察

(1) 構造物周辺の飛来塩分の輸送量分布

構造物周辺の飛来塩分の輸送量の断面および平面分布 を図-10 に示す。図-10(a)の断面図では、名立大橋海 側の高さが低い位置で塩分量が大きく、内陸側では塩分 量が小さくなる傾向がある。また、橋桁の下部では、大 気中を輸送する塩分量が比較的大きくなっている。図-10(b)は底面から 4.5m 付近の平面の計算結果であり、現 地観測の測点が設置されている位置と同様の高さの断面 分布である。図より、名立大橋の橋桁下部の平面的な塩 分量は、橋桁の海側で大きく、内陸側で減少している。

大気中の塩分量(mg/m²/s)

(a) 断面分布(橋桁中央部付近)

図-10 飛来塩分の輸送量の計算結果

(2) 表面塩分量の計算結果

飛来塩分の輸送過程の計算から予測した表面塩分量と 現地観測により測定した観測結果を比較したものを図ー 11 に示す。図の表面塩分量は、モルタル供試体を 12 ヶ 月間暴露した結果である。

図に示すように、計算結果は、測点 No.1-1 と No.1-3 の結果を良く再現できている。この結果から、モルタル 供試体で測定した表面塩分量は、飛来塩分の輸送量が年 間の中で大きくなるような気象・波浪条件を設定した計 算により、その傾向を再現できることが明らかになった。 しかしながら、今回の計算結果では、測点 No.1-2 の観測 結果と大きく差が見られる。これは、測点 No.1-2 が他の 測点と比較して、降雨による洗い流しの度合いが少ない ためである。計算では、降雨が直接接する測点で観測さ れた到達塩分量と表面塩分量の関係を用いて計算を実施 しているため、降雨が直接接しない測点 No.1-2 では塩分 量が小さくなっている。

4. 結論

本研究では、構造物壁面への到達塩分量と表面塩分量 の関係について検討を行った。その結果、構造物に到達 する塩分量とコンクリート表層部に浸透する表面塩分量 は比例的な関係があり、1ヶ月単位の到達塩分量から表 面塩分量の傾向を予測できることが明らかになった。さ らに、飛来塩分の輸送過程の数値モデルを用いて、表面 塩分量の傾向を予測できることが示された。

参考文献

- 山田文則,下村 匠,細山田得三:コンクリート構造の発生・輸送シミュレータの開発,コンクリート工学年次論文集, Vol.27, No.1, pp.865-870, 2005.6
- 山田文則,細山田得三,下村 匠:構造物表面に到 達する飛来塩分量の数値解析による予測,コンクリ ート工学年次論文集, Vol.29, No.1, pp.1041-1046, 2007.7
- 田中孝和,富山 潤,伊良波繁雄,吉村 忍:ラン ダムフォーク法による飛来塩分の拡散シミュレー ションに関する研究,コンクリート工学年次論文集, Vol.26, No.1, pp.789-794, 2004.7
- ソーンウィーラ、山田義智、大城 武、長嶺健吾: コンクリート中への塩化物イオンの浸透過程に関 する研究、コンクリート工学年次論文集, Vol.26, No.1, pp.801-806, 2004.7
- 5) 青木慶彦,上浦健司,福地大樹,下村 匠:風洞試 験による飛来塩分を受けるモルタルの表面塩分量 および塩分浸透性状の検討,コンクリート工学年次 論文集, Vol.32, No.1, pp.821-826, 2010.7
- 6) 日本建築学会:建築物荷重指針・同解説, pp.16-357, 2004
- (神座栄三,津嘉山正光,山路功祐,日野幹雄:飛末 (海塩粒子)拡散の数値流体力学的解析,海岸工学論 文集,第40巻, No.2, pp.1036-1040, 1993.11