論文 材端に腰壁を有する鉄筋コンクリート梁の配筋と曲げ強度の検討

松永 健太郎*1·小坂 英之*1·新上 浩*2·小田 稔*3

要旨:腰壁を構造部材として利用することを目的とし,材端に腰壁を設けた梁の加力実験を行い,腰壁部分の配筋と曲げ強度の評価方法について検討した。実験の結果,腰壁の横筋は上部に集中的に配筋するよりも, 高さ方向に分散させて配筋する方が,腰壁の損傷が抑制されることを確認した。部分的に腰壁のある変断面 梁の曲げ強度は,腰壁内に仮想剛域を設定し,その剛域端で曲げ降伏する等断面梁として扱うことで評価で きることが明らかになった。腰壁先端部の補強筋量を定めるために,腰壁の軸剛性を考慮したモデルを設定 して補強筋に作用する引張力を検討した結果,計算値は実験値に概ね対応した。

キーワード:腰壁,配筋,変断面材,剛域,降伏ヒンジ

1. はじめに

板状集合住宅の外廊下側の梁には,図-1 に示すよう に材端部に腰壁が配されることが多い。この場合は柱-腰壁間にスリットを設け,腰壁を非構造部材として扱う ことが一般的である。しかしながら,腰壁をハンチのよ うに梁の一部として扱えば,梁せいを抑えて所要の耐力 を確保することができ,住居計画において必要な腰壁を 有効に活用できるものと思われる。

本研究は、このように腰壁を構造部材として利用した 変断面梁に関するものであり、既報告¹⁾では梁の降伏ヒ ンジ領域を材端にした場合と腰壁先端近傍に設定した場 合の加力実験を実施し、各部の損傷状況や曲げ耐力等の 基本性状について検討した。実験の結果、このような梁

では降伏ヒンジ領域を腰壁先端近傍に設定した方が,つ まり腰壁のある部分は剛域のように扱った方が,腰壁の 損傷が抑えられることが明らかになった。また,梁の一 方の端部にのみ腰壁を設けて逆対称曲げ加力実験を行っ た結果,載荷中の反曲点位置の変動は小さく,材軸心の ずれを無視して変断面梁として扱うことで反曲点位置を 概ね評価できることが確認された。

そこで、本論文では反曲点位置を仮定して腰壁のある 梁片側部分を対象とした片持ち梁形式の加力実験を実施 し、降伏ヒンジ領域を腰壁先端近傍に設定する場合の腰 壁部分の配筋方法および材端に部分的に腰壁を有する変 断面梁の曲げ強度の評価方法について検討した。

2. 実験計画

2.1 試験体

試験体一覧を表-1 に示す。いずれも図-2 の試験体 図に示すように、端部にのみ腰壁を設けた縮尺約 1/2 の 片持ち梁試験体であり、本論文では既報告¹⁾の4体(No.4 ~No.7)を含めて計9体を検討対象とする。腰壁はその

表-1 試験体一覧

	梁								腰壁				
$b \times D$	十位	せん断	$t_w \times H_w$	L_w	主筋(横	筋)		_	一般部補	前強筋		先端部補強	ì筋
(mm)	土肋	補強筋	(mm)	(mm)	配筋	方式	配筋	A^{*1}	B^{*1}	C ^{**1}	$_{w}p_{w}(\%)^{*2}$	配筋	$_{t}p_{w}(\%)^{*3}$
									@120	@130	0.68		
				725					@150	@65	0.96		126
					2 V 2 D10							$\Box 2 \times 3 - 012.0 \text{@}31$	4.30
425	614	5 117 1	225	525	3 ^ 3-D19	集中							
\times	0+4 D10	3-07.1 @65	\times				U7.1	@130				□3×4-U7.1@50	2.13
425	-D19	<i>w</i> 05	475	725					-	@130	0.55	□2×4-U7.1@50	1.42
				125	3×2-D19								
					2×4 D10	〇歩						□3×4-U7.1@50	2.13
				525	2/14-D19	刀取							
	$b \times D$ (mm) 425 \times 425	梁 b×D (mm) 主筋 425 $6+4425$ -D19	マントレージョン $b \times D$ (mm) 主筋 せん断 補強筋 425 \times 425 +4 -D19 @65	マンション マンション マンション マンション マンション (mm) 主筋 せん断 $t_w \times H_w$ (mm) 425 (mm) 425 (mm) 425 (mm) 425 (mm) 425 (mm) 425 (mm) 6+4 (mm) 6+	225 425 425 425 425 425 425 425 425 6+4 -D19 6+4 5-U7.1 @65 225 \times 475 725 255 \times 475 725 525 \times 475 725 525 \times 725 525	マンジェンジェンジェンジェンジェンジェンジェンジェンジェンジェンジェンジェンジェン	シンD (mm)主筋ぜん断 補強筋 $L_w \times H_w$ (mm)主筋(横筋) 配筋425 × 4256+4 -D195-U7.1 (@65225 × 475725 5253×3-D19 3×3-D19 3×2-D19集中 集中 3×2-D19	シンD (mm) 主筋 ぜん断 補強筋 $t_w × H_w$ (mm) Lw 主筋(横筋) 425 前 前 方式 配筋 425 6+4 5-U7.1 225 525 $3 × 3$ -D19 集中 425 6+4 5-U7.1 × 1 $3 × 3$ -D19 集中 U7.1 225 525 525 3×2-D19 1 1 1 425 525 525 525 1 1	シンD (mm) 主筋 ぜん断 補強筋 $t_w \times H_w$ (mm) L_w 主筋(横筋) 425 https://actional.org 万25 三筋 万25 万25 3×3 -D19 集中 425 425 6+4 5-U7.1 225 525 3×3 -D19 集中 U7.1 @130 425 6+4 5-U7.1 25 525 3×3 -D19 集中 U7.1 @130 425 5-U7.1 25 525 3×2 -D19 女 0	梁 ジンD 主筋 ぜん断 $t_w \times H_w$ L_w 主筋(横筋) $$	梁 送し 送し 法 世ん断 $t_w \times H_w$ L_w 主筋(横筋) 一一般部補強筋 (mm) 主筋 (mm) (mm) 配筋 方式 配筋 $A^{\otimes 1}$ $B^{\otimes 1}$ $C^{\otimes 1}$ 425 6+4 5-U7.1 225 525 3×3 -D19 集中 μ^{-1} a^{-1} $a^$	梁 ····································	梁 送し 展示 世心断 $t_w imes H_w$ L_w 主筋(横筋) 一一般部補強筋 一般の学校部 先端部補強 (mm) 主筋 (mm) (mm) (mm) 配筋 方式 配筋 A^{*1} B^{*1} C^{*1} wp_w (%)*2 配筋 425 \wedge 5-U7.1 725 725 3×3 -D19 μ_v μ_v μ_w 0.68 -2×3 -U12.6@51 425 \wedge -1019 665 525 3×3 -D19 μ_v μ_v μ_w 0.55 -2×3 -U12.6@51 -1019 -1019 -2×3 -D19 μ_w μ_w μ_w -1012×3 -D12.6@51 -1019 </td

b:梁幅, D:梁せい, t_w : 腰壁厚, H_w : 腰壁高さ, L_w : 腰壁長さ, $_wp_w$: 腰壁一般部補強筋比, p_w : 腰壁先端部補強筋比 ※1 図-2参照, ※2 $_wp_w=100 \times \Sigma$ (補強筋 A~C の断面積)/ (t_ws_w) ($s_w=130$ mm)

※3 $_{t}p_{w}=100 \times \Sigma(1 組の先端部補強筋の断面積)/(t_{w}s_{t})$ (s_{t} :先端部補強筋のピッチ)

*1 三井住友建設(株) 技術開発センター 工修 (正会員)

*2 三井住友建設(株) 技術開発センター

*3 三井住友建設(株) 構造設計ディビジョン

1 面が梁側面と同面になるように偏心して取り付いてい る。試験体の降伏ヒンジ領域はいずれも腰壁先端近傍の 梁断面部分を想定(図-1参照)しており,材端の腰壁 付き断面部の曲げ強度を高めるために腰壁には腰壁主筋 D19(SD490)を配している。No.4~No.10では,この腰 壁主筋が曲げ補強筋として効果的なように腰壁の上部に 集中的に配筋しており,No.11,No.12では腰壁主筋がせ ん断補強筋としても機能することを意図して腰壁の高さ 全体に分散させて配筋している。梁主筋および腰壁主筋 は,試験体のスタブ端の定着鋼板に溶接接合した。

腰壁主筋に引張力が生じる際の応力抵抗機構が形成されるように,腰壁主筋の先端には定着金物を取り付け, 腰壁先端部には腰壁の最上端の主筋から梁下端筋までの 閉鎖型の補強筋(図-2の補強筋 A)を配筋した。腰壁 先端部を除く腰壁一般部には,補強筋 A のような形状の 他,フック付きの補強筋(同図の補強筋 B)や,腰壁の

表-2 コンクリートの材料試験結果

封驗休	亦合	圧縮強度	ヤング係数	割裂強度	
时间大学	고마리고	$\sigma_B (\text{N/mm}^2)$	E_c (N/mm ²)	$\sigma_t (\text{N/mm}^2)$	
No.4	腰壁・梁	43.6	30000	2.84	
No.5	腰壁・梁	43.8	30300	3.13	
No.6	腰壁・梁	40.3	28200	2.88	
No.7	腰壁・梁	41.7	30600	2.99	
No.9	腰壁	43.9	28400	3.26	
10.8	梁	49.8	30700	4.12	
No 0	腰壁	45.2	27900	3.53	
IN0.9	梁	47.1	29900	4.11	
No 10	腰壁	45.5	29800	3.47	
NO.10	梁	44.6	28400	3.40	
No.11	腰壁	46.8	29600	3.50	
NO.11	梁	45.4	ヤング係数割零 E_c (N/mm²) σ_i (N300002303003282002306002284003307004279003299004298003284003284003318003296003296003	3.47	
No 12	腰壁	45.5	31800	3.50	
10.12	梁	42.7	29600	3.39	

表-3 鉄筋の材料試験結果

試験 体	種類	ATTR	降伏点 σ _y (N/mm ²)	引張強度 <i>o_u</i> (N/mm ²)	伸び (%)	使用 部位
No.4	D19(SE	9490)	532	732	18	主筋
\sim	U7.1(SBP	D1275)	1429	1472	9	補強筋
No.7	U12.6(SBF	PD1275)	1378	1470	9	補強筋
No.8	D19(SE	0490)	543	712	17	主筋
\sim	U7.1 閉鎖型		1400	1451	9	補強筋
No.12	(SBPD1275) フック型		1382	1439	8	補強筋

最上端の主筋から梁上端筋までの閉鎖型の補強筋(同図 の補強筋 C)を配筋した。各試験体の腰壁先端部補強筋 比 *p*w および腰壁一般部補強筋比 *wp*w は**表**-1 に示すよう に設定した。

No.4~7 では、梁と腰壁のコンクリートを同時に打設 し、No.8~12 では梁を打設した翌日に梁上面部の目荒ら しを行い、その翌日に腰壁を打設した。コンクリートと 鉄筋の材料試験結果を表-2 および表-3 に示す。

2.2 加力方法

加力方法を図-3に示す。試験体を90度回転させ垂直 に立てた試験体のスタブを反力床に固定し、1000kN油圧 ジャッキにより反曲点位置を水平方向に加力した。腰壁 が曲げ引張域となる方向を正加力方向とし、曲げ圧縮域 となる方向を負加力方向とした。加力は図-3に示す変 形角*R*による変位制御とし、折り返し変形角は*R*=±1/400, 1/200, 1/100, 1/67, 1/50, 1/33, 1/25, 1/20 (各 2 回), 1/15rad を基本とした。

3. 実験結果

3.1 破壊状況および荷重-変形角関係

腰壁主筋を集中配筋した No.8 と分散配筋した No.11 の変形角 R=±1/33rad 載荷後のひび割れ状況を図-4 に 例示し、全試験体の梁せん断力 Q-変形角 R 関係を図-5 に示す。破壊状況は全試験体で概ね同様であり、梁の 曲げひび割れは、正・負加力ともに腰壁先端の近傍部か ら発生し始め、その後、材端寄りおよび加力点寄りにひ び割れ範囲が拡大した。梁のひび割れが密に発生する範 囲は、降伏ヒンジ領域を想定した腰壁先端の近傍部であ った。なお、梁と腰壁が同面の側面の梁部分には、負加 力時に梁部分が腰壁を押すことによる影響として, 逆せ ん断のひび割れが確認された。

図-5中に初ひび割れの発生時期を示すように、梁の 曲げひび割れ(○印)の直後に腰壁に斜めひび割れ(△ 印)が発生した。腰壁主筋を集中配筋した試験体と分散 配筋した試験体で腰壁の斜めひび割れを比較すると、梁 と腰壁が同面の側面で顕著に見られるように、分散配筋 の方がひび割れ数は少なかった。R=-1/50rad 載荷後の腰

600 _[Q (kN) _{+Qmax}=465kN

20

|600 _|Q (kN) _{+Q_{max}=428kN}

20

|600 _|Q (kN) _{+Q_{max}=460kN}

Q₈₀

Ā +Q₈₀

40 60 80 *R* (×10⁻³rad)

40 60 80 *R* (×10⁻³rad)

+R,,= 59 × 10⁻³rad - R_u=-51 × 10⁻³rad

80 -80

-80

腰壁

-80

40 60 80 *R* (×10⁻³rad)

- R_u =-57 × 10⁻³rad

復元カモデル 梁の初曲げひび割れ 腰壁の初斜めひび割れ

梁1段目主筋初降伏 梁2段目主筋初降伏 最大荷重

400

264

-2⁄0/

-200

(**b**b

-600

(1) No.4

a

40 -20

40

(4) No.7

400

-26//

-201

-600

(7) No.10

-2⁄0/

-Q_{max}=-460kN -600

Δ

П

ര

腰壁 集中配筋 長さ 725mm 一般部_wP_w=0.68 %

-Q_{max}=-520kN

集中配筋 長さ 525mm 400 一般部_wp_w=0.55 % 先端部_tp_w=4.34 %

-80 -60 -40

腰壁 集中配筋 長さ 725mm

-60 -40

-Q_{max}=-547kN

-80

一般部_wp_w=0.55 % 先端部_tp_w=2.13 % 200

-Q₈₀ ▽ /

-80 -60

腰壁

先端部,pw=4.34 % 200

-40

壁の斜めひび割れの残留幅は,集中配筋の試験体で 0.20 ~0.45mm 程度,分散配筋の試験体で 0.10~0.15mm 程度 であった。このように腰壁主筋を分散させることによっ て損傷が抑制されたのは,ひび割れを貫通する補強筋量 が増大したためと考えられる。

Q-R関係を見ると、いずれの試験体も変形性能に優れた履歴性状を示しており、同図中に併記した限界変形 角 R_u は 1/20rad 程度以上となっている。初期剛性および 最大荷重は、腰壁が曲げ引張域となる正加力時に比べて 曲げ圧縮域となる負加力時の方が高くなっている。正加 力時にはR=+1/67rad までに梁上端筋が降伏ひずみに達 し、負加力時は正加力時よりやや小さな変形角で梁下端 筋が降伏ひずみに達した。腰壁主筋の配筋方法のみが異 なる試験体(集中配筋のNo.8 と分散配筋のNo.11)を見 ると、梁主筋の降伏時期、最大荷重および履歴形状に大 きな差異は見られない。

腰壁先端部補強筋比 p_w のみが異なる腰壁主筋を集中 配筋した No.6 (p_w =4.34%), No.8 (p_w =2.13%), No.9

(p_w =1.42%)を比較すると、 p_w の最も小さい No.9 で正 加力時の R_u が大きくなっており、梁一腰壁間を結ぶ、こ の補強筋の剛性が影響したものと考えられる。

3.2 復元力モデル

各種耐力の実験値と計算値の一覧を**表**-4 に示す。腰 壁付き梁をモデル化するにあたり,腰壁部を剛域として 扱うことが考えられる。腰壁先端から剛域端までの距離 を λD (D:梁せい)と表すことにする。 λD は,材軸 心のずれを無視して腰壁断面と梁断面で構成される変断 面梁の剛性計算値を算出し,これと剛性が等しくなる等 断面梁の仮想の部材長 l_e を求め, $\lambda D=L_w-(l-l_e)$ として 求めた。各試験体の λ は, 表-4 および図-2 に示したようになり, 腰壁長さ L_w =725mm の場合は 0.54~0.57, L_w =525mm の場合は 0.42, 0.43 となり, ひび割れが密に発生した範囲と概ね対応している。この剛域端位置で梁が曲げ耐力に達する時の梁せん断力 Q_y に対する最大荷重 Q_{max} の比率 Q_{max}/Q_y は, 正加力で1.04~1.13(平均1.09), 負加力で 1.16~1.29 (平均 1.25) となっている。計算値は, 腰壁が曲げ引張域となる正加力時には実験値によく対応しているが, 腰壁が曲げ圧縮域となる負加力時には実験値より低めに評価されている。これは, 前述のように材軸心のずれを無視し, 正・負加力ともに剛域端位置を同じに設定したためであるが, 負加力で計算値より荷重が高くなる影響は, 設計時には別途考慮する必要があるものと思われる。

表-4 に示す剛性低下率 α_y は,式(1)に示す一般に用いられている等断面梁の剛性低下率 $_{sg}\alpha_y^{2}$ に低減係数(1- L_w/l)を乗じ,式(2)により算出したものである。

$${}_{sg}\alpha_{y} = \left(0.043 + 1.64n \cdot p_{t} + 0.043 \cdot \frac{a}{D}\right) \cdot \left(\frac{d}{D}\right)^{2} \quad (1)$$
$$\alpha_{y} = {}_{sg}\alpha_{y} \cdot \left(1 - \frac{L_{w}}{l}\right) \quad (2)$$

ここで、nはヤング係数比,aは剛域端からのせん断ス パン長さ、dは梁の有効せい、 p_t は梁の引張鉄筋比とす る。式(2)の剛性低下率 α_y を用いた復元力モデルの骨格曲 線を図-5 に併記する。骨格曲線の降伏時変形角は、実 験結果と概ね対応していることがわかる。

3.3 ひずみ性状

材端における高さ方向の主筋のひずみ分布を図-6 に 示す。腰壁が曲げ引張域となる正加力時では、梁部分の

+	±111 ±1-	17	尾験値	計算値						
試験体	加力	最大荷重	Q_{\max} 時変形角	曲げ耐力	材端降伏せん断力	剛性低下率	0 10	2	0 10	
	기미	$Q_{\rm max}$ (kN)	$R_{\rm max}(\times 10^{-3} {\rm rad})$	$Q_y(kN) \approx 1$	Q_{end} (kN) *2	α_{y}	Q_{max}/Q_y	л	Q_{end}/Q_y	
No 4	正	465	40.2	413	847	0.14	1.13	0.57	2.05	
110.4	10.4 負	-520	-30.6	-413	1077	0.14	1.26	0.57	2.61	
No 5	正	467	40.4	413	847	0.14	1.13	0.57	2.05	
10.5	負	-526	-30.4	-413	1077	0.14	1.27		2.61	
No 6	正	464	40.3	412	847	0.15	1.13	0.57	2.06	
10.0	負	-512	-15.1	-412	1077	0.15	1.24	0.57	2.61	
No 7	No.7 E	428	50.7	398	902	0.17	1.08	0.43	2.27	
110.7	負	-460	-15.2	-398	1147	0.17	1.16		2.88	
No 8	正	454	14.6	425	864	0.14	1.07	0.54	2.03	
110.0	負	-540	-14.6	-425	1099	0.14	1.27		2.59	
No 9	正	452	30.3	425	864	0.14	1.06		2.03	
110.9	負	-547	-15.1	-425	1099	0.14	1.29	0.54	2.59	
No 10	正	460	39.9	423	680	0.15	1.09	0.55	1.61	
10.10	負	-547	-14.6	-423	1099	0.15	1.29	0.55	2.60	
No 11	正	458	30.3	421	701	0.15	1.09	0.57	1.67	
10.11	負	-541	-15.2	-421	1197	0.15	1.28		2.84	
No 12	正	426	38.9	408	746	0.17	1.04	0.42	1.83	
10.12	負	-484	-14.2	-408	1274	0.17	1.18	0.42	3.12	

表-4 実験値および計算値一覧

※1 $Q_y = 0.9 \cdot a_t \cdot \sigma_y \cdot d/l_e$, ※2 $Q_{end} = \sum a_{ti} \cdot \sigma_y \cdot (d_i - x_n/2)/l^2$, a_t :梁の引張鉄筋の断面積, d:梁の有効せい,

a_{ii}:中立軸より引張側にある i 番目の鉄筋の断面積, d_i:圧縮縁から i 番目の鉄筋までの距離, x_n:中立軸位置

を 8000 (王) 材端

ж

梁端からの距離 (mm)

負加力

-1/400rad

-1/200rad -1/100rad

-1/67rad

-1/50rad -1/33rad

加力点

-0--

----_^ ٠

-n-

降伏 ひずみ

ΰ

腰壁先端

ひずみ分布は曲げモーメントの方向に対応して直線状に なっているが、腰壁部分のひずみの勾配は梁部分より小 さくなっており, 平面保持仮定が成立しないことを示し ている。一方,腰壁が曲げ圧縮域となる負加力時では, R=-1/200rad までは腰壁付き断面全体で直線に近い分布 形状を示し、その後の変形角では梁と腰壁で異なるひず み勾配を示している。

試験体 No.11 の梁の引張主筋(正加力:梁上端筋,負 加力:梁下端筋)の材軸方向のひずみ分布を図-7に示 す。梁主筋の降伏範囲について見ると、*R*=±1/50rad(□ 印)では腰壁先端から 0.5D 近傍までの範囲で降伏ひずみ に達している。腰壁の付く範囲の梁引張主筋のひずみ分 布を見ると、正加力時では梁端でひずみが小さく、腰壁

先端部でひずみが大きくなっているのに対し、負加力時 では腰壁の範囲で梁下端筋のひずみが同程度の値を示し ている。RC 規準 ²⁾付 10 の終局曲げ耐力式により算定し た材端の降伏せん断力 Qend (表-4 参照) は、ヒンジ領 域の降伏せん断力 Q_v に対して 2.59~3.12 (= Q_{end}/Q_v) で あるが, R=-1/67rad 以降で材端も降伏ひずみに達するま でひずみが大きくなっている。しかしながら、引張主筋 のひずみが著しく増大する範囲は、正・負加力ともに前 述の剛域端(材端から *L* D の位置)の近傍であった。

図-8 曲げモーメント分布 (R=+1/100rad)

, 梁端からの距離 (mm)

(2) No.11

4. 腰壁先端補強筋の引張力

(1) No.8

4.1 曲げモーメント分布

正加力の R=+1/100rad 時の曲げモーメント分布を図ー 8 に示す。実線は部材全体の曲げモーメント図であり、 □印で示す分布は梁主筋に貼付したひずみゲージから求 めた梁負担部分の曲げモーメント分布である。図示のよ うに梁部分の負担曲げモーメントは、腰壁先端近傍から 材端に向かって徐々に減少し、逆に腰壁の負担曲げモー メントが増加している。したがって、負加力時のひび割

表-5 腰壁先端部補強筋の引張力

	加力	材端に	おける粱	と部分の	腰壁先端部補強筋の				
試		負担曲	げモー	メント	引張力				
験	カキ	実験値	計算値	$_tM_G$	実験値	計算値		$_{t}T_{s}$	
体	力	${}_{t}M_{G}$	$_{c}M_{G}$	—	$_{t}T_{s}$	M_R	$_{c}T_{s}^{*}$	—	
	[H]	(kN•m)	(kN∙m)	$_{c}M_{G}$	(kN)	(kN·m)	(kN)	$_{c}T_{s}$	
No 8	E	329	304	1.08	646	444	681	0.95	
No.8	負	-193	-199	0.97	-	-692	(-1061)	-	
No 0	Ē	347	299	1.16	646	447	685	0.94	
No.9	負	-192	-201	0.95	-	-701	(-1074)	-	
N- 10	正	383	342	1.12	721	418	640	1.13	
NO.10	負	-251	-200	1.25	-	-702	(-1075)	-	
No.11	正	315	389	0.81	618	367	562	1.10	
NO.11	負	-206	-197	1.05	-	-696	(-1066)	-	
No 12	正	393	333	1.18	506	327	693	0.73	
No.12	負	-221	-141	1.57	-	-608	(-1288)	-	

※()内:負加力時の。T。は腰壁先端部に作用する圧縮力参考値

れ発生状況で確認されたように,正加力時にも腰壁によ って梁部分は逆せん断状態となっていることがわかる。

4.2 腰壁付き梁のモデル化

腰壁先端部補強筋の所要量を定めるためには、正加力 時に同補強筋に生じる最大引張力を把握する必要がある。 図-6 に示す最大荷重時の材端のひずみ分布を見ると, 正加力時の腰壁部分は全域で引張ひずみとなっており, ひずみの勾配は小さい。そこで腰壁部分は軸剛性 kyのみ を考慮する図-9に示す簡略化したモデルによって、腰 壁先端部補強筋の引張力_cT_sを検討する。軸方向ばねの 接合位置は、梁の降伏ヒンジ位置と整合するように図-2に示す仮想剛域端(材端からの長さβ1)とする。梁に 作用する曲げ戻しモーメント M_Rは、たわみ角法により 定式化すると式(3)で表される。腰壁先端部補強筋は正加 力時に M_Rを伝達するための引張鉄筋として機能するの で、 $_{c}T_{s}$ は M_{R} を0.9 L_{w} で除して評価することとした。

$$M_R = \frac{2 - \beta'}{2\left(\frac{EI}{V} + 1\right)} \cdot l \cdot Q \tag{3}$$

$$_{c}T_{s} = \frac{M_{R}}{0.9L_{w}} \tag{4}$$

$$V = k_V d_{GW}^2 \beta' l \tag{5}$$

ここで、kvは正加力時は腰壁主筋の軸剛性, 負加力時 は腰壁コンクリート断面の軸剛性, β' は片持ち梁長さ lに対する仮想剛域長さの比, E は梁コンクリートのヤン グ係数, Iは梁の断面二次モーメント, d_{GW}は梁材軸芯と 腰壁の軸剛性位置までの長さとする。

腰壁先端部補強筋の引張力の実験値、T.と計算値、T.を 表-5に比較して示す。_tT_sは最大荷重時の腰壁先端部補 強筋のひずみから算出した。_tT_sは表-4のQ_{max}より大き いことから,腰壁先端部近傍の梁部分は逆せん断状態と なることが分かる。,T_/cTsは0.73~1.13(平均0.97)とな っており、腰壁長さの短い No.12 で計算値が過大になっ ているものの,概ね対応している。なお,最大荷重時の k_V と梁の曲げ剛性 EI との関係 (EI/V) や腰壁長さの影響 についてはさらに検討が必要である。

腰壁が曲げ圧縮域となる負加力時についても同様に計 算すると,腰壁先端部に作用する圧縮力(表-5括弧内) は正加力時の引張力。Tsより大きくなっている。図-6を 見ると材端の腰壁上部で圧縮ひずみとなっていることか ら、 負加力時の圧縮力は腰壁に形成される斜め圧縮束に よって伝達されるものと考えられる。

5. まとめ

材端に腰壁を設けた梁部材の加力実験を行い、腰壁の 配筋方法および曲げ強度の評価方法について検討した。 結果をまとめると以下の通りである。

- (1) 腰壁主筋は, 腰壁の上部に集中的に配筋するよりも, 壁の高さ全体に分散して配筋する方が腰壁の損傷の 抑制に効果的である。
- (2) 腰壁内に仮想の剛域を設定して算出した曲げ耐力の 計算値は、実験値の最大荷重を安全側に評価するこ とがわかった。また、復元力モデルは既往の設計式 の準用により評価可能である。
- (3) 腰壁先端部の補強筋に作用する引張力は、腰壁の軸 剛性によって梁に作用する曲げ戻しモーメントから 計算することで概ね評価できる。

参考文献

- 1) 小坂英之,新上浩,松永健太郎,小田稔:材端に腰 壁の付く鉄筋コンクリート造梁部材の加力実験(そ の1)(その2),日本建築学会大会学術講演梗概集 (関東), C-2 構造IV, pp.435-438, 2011.8
- 2) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説, 2010