論文 曲げ損傷を受けた鉄筋コンクリート部材に定着されたアンカーの引 張耐力に関する実験的検討

松尾 豊史*1·金津 努*2

要旨:本研究では,鉄筋コンクリート部材に生じる曲げ損傷がアンカーの破壊性状に及ぼす影響を明らかに することを目的として,アンカーの引き抜き実験に基づく検討を実施した。この結果,埋込長がかぶりより も長い場合には,鉄筋の効果でコーン状破壊の破壊面積は増大する。一方で,埋込長がかぶりと同程度の場 合,鉄筋降伏が生じる損傷程度では,コーン状破壊の破壊面積はひび割れの影響を受けて低減する。また, 鉄筋降伏を超える損傷程度では,ひび割れ幅が大きくなるため,アンカーがひび割れ部から抜け出す破壊モ ードになる可能性があることなどを明らかにした。

キーワード:鉄筋コンクリート、ひび割れ損傷、アンカーボルト、定着性能、載荷実験

1. はじめに

近年,コンクリート構造物の各種基準類に性能照査の 概念が取り入れられている¹⁾。耐震性能照査に用いる解 析技術の高度化に伴って,局所的な損傷を受けた構造物 の塑性変形域における性能照査が可能になってきてい る。一方で,笹子トンネル天井板落下事故なども受けて, 機器・配管を支持する鉄筋コンクリート(RC)構造物では, 局所的な損傷が支持機能に及ぼす影響が懸念されてい る。

一般に, RC 構造物では, 機器・配管を壁や床に固定 する際にアンカーが利用される。このため、耐震性能照 査においてアンカーの定着性能をより実際的に評価す るためには、地震作用によって生じるアンカー周りの母 材コンクリートの損傷の影響を適切に考慮する必要が ある。頭付きアンカーボルトの引張耐力評価法について は、日本建築学会(AIJ)「各種アンカーボルト設計指針」 2)に示されている。ひび割れの影響を受ける場合につい ては、河村ら³⁾は、ひび割れで切断された部分を除いた 有効投影面積を用いることにより、コンクリート躯体の コーン状破壊による引張耐力を評価可能であると述べ ている。しかし、地震作用による外力要因などで生じる 損傷のうち, 面内せん断に伴うひび割れについては検討 されているものの 4,5, 図-1 に示すような面外曲げによ り RC 部材が降伏し、コンクリートが剥離するような損 傷状態に対する適用性はこれまで検討されていない。

これらを踏まえて、本研究では、RC 部材に作用する 面外曲げがアンカーの定着性能に及ぼす影響を明らか にすることを目的として、面外曲げを受けた RC 部材に 定着されたアンカーの引き抜き実験を実施することに より、曲げ損傷を受けたアンカーの引張耐力に関する検 討を行った。

2. アンカーの引き抜き実験

2.1 試験体の仕様

実験に用いたアンカー材の形状寸法の例を図-2 に示 す。アンカーの軸径は22mmで,頭部径は35mmである。 アンカー材として用いた頭付きアンカーボルト(JIS B-1198)の仕様を表-1に示す。アンカー材を降伏させな いことを意図して,通常よりも高強度材料を用いた。

RC 試験体の断面図を図-3 に示す。アンカーを型枠下 面中央に固定した上でコンクリート打設を行い,試験体 を作製した。設計基準強度は 24N/mm² であるが,試験時 のコンクリート圧縮強度(平均値)は 39.6N/mm² であった。 主筋には,表-2 に示すように単アンカーでは D22,実 アンカーでは D32 を用いた。

*1 電力中央研究所 地球工学研究所 構造工学領域 主任研究員 工修 (正会員)

*2 株式会社セレス 工博 (正会員)

表-2 鉄筋の引張試験結果(SD295A)

	呼び名	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)
単アンカー	D22	363	545	26
実アンカー	D32	364	522	26

2.2 実験ケース

実験ケースを表-3 に示す。検討する主たるパラメー タは、①ボルト本数、②ボルト長(埋込長)、③損傷状態、 ④ひび割れ位置(スリットの有無)の4つである。 a)ボルト本数

ボルト本数は,基本的な1本脚の単アンカーおよび実 アンカーとして最も一般的である4本脚を対象とした。 b)ボルト長

ボルト長は,200mm と100mm のものを用いた。ボル ト長 100mm は概ね下限に相当し、ボルト長 200mm 程度 のものがよく用いられる。ボルト長 200mm の場合には、 RC 部材に配筋された主筋の影響を受ける(図-2)。 c)損傷状態

RC 試験体の損傷状態としては,無負荷で無損傷,鉄筋が降伏した状態,コンクリート表面が剥離した状態の3 段階とした(図-1)。

d)ひび割れ位置

ひび割れ位置の影響を把握するため, RC 試験体に予めスリットを設置して,ひび割れ発生を誘導した。スリット(幅 2mm)は試験体の奥行き方向に貫通させて設置し,その深さはアンカーを溶接した鋼板厚(22mm)と同 ーとした(図-2および図-3を参照)。

単アンカーでは、スリットの設置位置はアンカー位置 と一致させた場合(スリット中央)および、アンカー位 置からボルト長の半分だけ水平方向に離れた位置とし た場合(スリット偏心)とした。実アンカーでは、片側 のアンカー位置にスリットを設置した。なお、損傷を与 えないスリットあり試験体では、スリット長をボルト長 と同一とした(JA0A では 122mm, JB0A では 222mm)。

2.3 載荷方法および計測項目

載荷方法の概略図(単アンカー)を図-4 に示した。面 外曲げの載荷は、単アンカーの場合、試験体の両端に鋼 製の載荷治具を設置した。実アンカーの場合には、鋼製 治具の代わりに、試験体の全長を長くした。

(1) 初期曲げ載荷時

試験装置は,試験体側面に設置した油圧ジャッキ2台 により,RC 試験体中央に曲げモーメントを導入して損 傷を与える機構となっている。単アンカーではアンカー 部が引張状態の場合は試験体中央底面を支点とし,実ア ンカーでは等モーメント区間を900mmとした。

(2) アンカー引き抜き時

試験体上に設置したセルフバランス方式の引き抜き 試験装置により,アンカーの引き抜き試験を行った。ア ンカー引き抜き試験装置の支点間の距離は,支点がボル ト長の2倍よりも外側になるように,単アンカーで は500mm,実アンカーでは800mmとした。

ケース名	ボルト長(mm)	損傷程度	スリット		
TA0N	100	なし	なし		
TA1C	100	鉄筋降伏	中央		
TA1S	100	鉄筋降伏	偏心		
TA2C	100	コンクリート剥離	中央		
TA2S	100	コンクリート剥離	偏心		
TB0N	200	なし	なし		
TB1C	200	鉄筋降伏	中央		
TB2C	200	コンクリート剥離	中央		
(b)実アンカー					
ケース名	ボルト長(mm)	損傷程度	スリット		
JA0N	100	なし	なし		
JA0A	100	なし	あり		
JA1N	100	鉄筋降伏	なし		
JA1A	100	鉄筋降伏	あり		
JA2N	100	コンクリート剥離	なし		
JA2A	100	コンクリート剥離	あり		
JB0N	200	なし	なし		
JB0A	200	なし	あり		
JB1N	200	鉄筋降伏	なし		
JB1A	200	鉄筋降伏	あり		
JB2N	200	コンクリート剥離	なし		
JB2A	200	コンクリート剥離	あり		

表-3 実験ケース一覧 (a)単アンカー

図-4 載荷方法の概略図(単アンカーの場合)

3. 実験結果および考察

3.1 初期曲げ載荷

RC 試験体の各損傷状態については、以下の項目により図-1と対応していることを確認した。

(1) 鉄筋降伏(断面降伏)

主筋の降伏ひずみは約 1838×10⁶であり,鉄筋降伏は, 主筋に貼付した鉄筋ひずみゲージが 2000~3000×10⁶と なることにより確認した。なお,鉄筋降伏が生じるひび 割れの最大ひび割れ幅は 1mm 未満であった^の。

(2) コンクリート剥離(断面終局)

コンクリートの剥離は、目視および、試験体表面に貼 付したコンクリートひずみゲージの計測値が 2000×10⁶ を超えて小さくなることを確認して判断した。コンクリ ートひずみの最大値は 3000~4000×10⁶程度であった。

3.2 単アンカーの引き抜き載荷

単アンカーの引き抜き荷重と変位の関係の比較を図 -5 に示した。これによると、各試験体が損傷している ほど、全体的に引き抜き荷重は低下する傾向にあること が分かる。ボルト長が短い 100mm 場合には、スリット 位置によらず、ボルト長 200mm よりも、引き抜き荷重 の低下程度が大きかった。これは、埋込長が浅い方が、 ひび割れやひび割れ幅の影響を顕著に受けるためであ ると考えられる。また、ボルト長 200mm の場合は、損 傷なしではボルトが破断し、損傷ありではコーン状破壊 せずに、ボルトが抜け出した。このため、ボルトに抜け 出しが生じた場合には、初期剛性が顕著に低下する傾向 が認められる。

RC 試験体の終局状況を図-6 に示す。これらによると、 ボルト長が 100mm で、ひび割れを偏心させたケースで はひび割れ面に沿って、顕著にコーン状破壊することが 確認された(図-6(a)(b))。これは、ひび割れ幅がある程 度大きい場合にはひび割れ面のせん断抵抗も低下する ためであると考えられる。また、ボルト長が 200mm の

(c)TB1C<鉄筋降伏> (d)TB2C<コンクリート剥離> 図-6 終局状況(単アンカー)

ケースにおいて,ひび割れがアンカーボルト部分と重な る場合には,アンカーが抜け出し,コンクリート表面に 割裂ひび割れが入り,コンクリートが盛り上がる現象が 観察された(図-6(c)(d))。これは,ボルト長 200mmの場 合は,アンカー頭部の支圧力が大きく,ひび割れが存在 することにより,局所的な支圧破壊が発生しやすくなり, アンカーの抜け出しが生じたためと考えられる。

3.3 実アンカーの引き抜き載荷

実アンカーの引き抜き荷重とアンカー引き抜け変位 の関係の比較を図-7 に示した。これによると、ボルト 長が長い方が最大荷重は大きく、両者とも損傷状態が著 しくなるにしたがって、アンカー引き抜き荷重が低下し た。ただし、ボルト長が長い 200mm の場合は、損傷が 鉄筋降伏程度であれば、最大荷重の低下程度は小さかっ た。これは、主筋が引き抜き抵抗に寄与しているためで あると考えられる。

主な試験体のひび割れ状況および終局状況を図-8 と 図-9にそれぞれ示す。これらよると、実アンカーでも、 スリット位置によりひび割れ発生領域が小さくなる傾 向が認められた。これは、ひび割れによりコーン状破壊 の破壊面積が低減するためであると考えられる(図-8(a),図-9(a)(b))。また、鉄筋が降伏する段階では、ボル ト長が 100mm の場合、コーン状破壊後に割裂ひびわれ を伴って終局に至っているが、ボルト長が 200mm の場 合は、割裂的なひび割れは発生するものの、主筋が持ち 上がり、破壊面が部材全域に広がるような状況が観察さ

(c) JA1A<ボ 小長 100mm> (d) JB1A<ボ 小長 200mm > 図-9 終局状況(実アンカー)

れた(図-9(c)(d))。これは、コーン状の破壊面が主筋に かかるため、主筋ごと引っ張りあげられるためと考えら れる。このため、ボルト頭部が主筋や配力筋の内側に位 置する場合には、通常のコーン状破壊よりも引き抜き破 壊面積が大きくなると考えられる。しかしながら、損傷 程度がコンクリートの剥離では、初期曲げ載荷時のひび 割れ本数およびひび割れ幅が増加するとともに、鉄筋降 伏の損傷程度と比べてアンカー引き抜き時のひび割れ 発生が少なくなり、アンカーの引き抜けが生じた(図-8(b)(c))。

4. 曲げ損傷を受けたアンカーの引張耐力評価

4.1 アンカー引張耐力の比較検討

アンカー引き抜き実験における実験値とAIJ指針²⁾で提 案されている引張耐力の計算値および設計値との比較 を行った結果を、単アンカーについては図-10に、実ア ンカーについては図-11にそれぞれ示す。なお、実強度 は設計値よりも大きくなる場合が多いため、アンカー引 張耐力の計算値についてはコンクリート圧縮強度の実 測値を用い、設計値についてはコンクリートの設計基準 強度 24N/mm²を用いた。また、評価式にはコーン状破壊 により決まる引張耐力を適用したが、単アンカー200cm ではボルト破断したため、アンカーの降伏により決まる 引張耐力を適用した。

(1) 単アンカー

図-10に示すように、アンカー定着部が、RC部材の 引張応力場にある場合、損傷程度が大きくなるにしたが って、アンカーの引張耐力は低下する。ボルト長が 200mmの場合、損傷程度が鉄筋降伏以降では、AIJの引 張耐力(計算値)は下回ったものの、引張耐力(設計値)は 上回っていた。一方で、ボルト長が短い100mmの場合、 損傷程度がコンクリートの剥離では、AIJの引張耐力(設 計値)を下回る場合もあった。このため、アンカーの埋 込長が短い場合には、ひび割れ損傷が与える影響が大き いと考えられる。

(2) 実アンカー

ボルト長 200mm の場合,損傷程度が大きくなるにし たがって,アンカーの引張耐力は低下するものの,その 低下度合いはボルト長 100mm よりも小さかった(図-11)。これは,ボルト長の長い 200mm の方が,深さ方向 に進行するひび割れの影響を比較的受けにくいことに 加えて,主筋より深い位置にアンカーがあり,引き抜き 耐力に主筋が効いているためと考えられる。また,ボル ト長が長い 200mm の場合,無損傷では,アンカーの引 張耐力は AIJ の引張耐力(計算値)よりも大きかった。損 傷程度が鉄筋降伏であれば,AIJ の引張耐力(設計値)は 上回ったものの,損傷程度がコンクリートの剥離では, AIJ の引張耐力(設計値)も下回った。

一方で、ボルト長が短い 100mm の場合、図-11(b)に

示すように,損傷状態の進展に応じて,アンカーの引張 耐力は低下した。その低下度合いは,鉄筋降伏以降顕著 になった。これは,鉄筋が降伏する前まではひび割れ幅 はあまり大きくならないのに対して,鉄筋降伏以降にひ び割れ幅が急激に大きくなるためであると考えられる。 ボルト長が短い100mmの場合,無損傷であれば,AIJの 引張耐力(計算値)とほぼ同程度であった。損傷程度が鉄 筋降伏以降では,引張耐力の低下度合いは大きく,AIJ の引張耐力(設計値)も下回った。なお,実験では,RC 試験体が明確に鉄筋降伏した後に,アンカーの引き抜き 載荷を実施しているので,損傷が「鉄筋降伏」は鉄筋降 伏からやや進んだ段階に対応している。

4.2 引張耐力に及ぼすひび割れ損傷の影響

(1) 損傷が鉄筋降伏程度の場合

実験結果に基づいて,鉄筋降伏が生じるひび割れ程度 の場合には、コンクリートのコーン状破壊の有効水平投 影面積はひび割れの影響により小さくなることが確認 された。有効水平投影面積をひび割れ位置に応じて低減 する場合、アンカーの抜け出しがなく、ひび割れが完全 にアンカー位置と一致していれば、アンカー全周のコー ン状破壊耐力が期待できる。しかし、アンカー頭部から ひび割れ位置までの距離が小さくなるほど、有効水平投 影面積は小さくなる傾向にある(図-12)。したがって、 ボルト長が長く、ボルト頭部径が小さい場合には、低減 する有効水平投影面積は半分に近づく。

そこで、有効水平投影面積を 1/2 に低減した場合のア ンカー引張耐力の実験値と引張耐力を比較した結果を 図-13 に示す。これにより、実験結果の下限値も全て AIJ のコーン状破壊耐力(計算値)を上回り、安全側の評 価となることが確認された。

(2) 曲げ損傷と低減係数の関係

RC 部材の損傷状態とコーン状破壊耐力の低減係数に 関する実験値との関係を整理した結果を図-14 に示す。 低減係数は、引張耐力値を無次元化するために、実験値 を設計コーン状破壊耐力で除したものである。この実験 値と計算値の比が、コーン状破壊耐力の低減係数に相当 する。これによると、ボルト長が 200mm の場合、損傷 程度が鉄筋降伏までであれば、低減係数は 0.6 を上回っ ている。しかしながら、損傷程度がコンクリートの剥離 では、低減係数は AIJ 式の 0.6 を下回った。ただし、本 実験では、RC 試験体に曲げ損傷を与えた状態でアンカ ーの引き抜きを行っているが、地震などの偶発作用であ れば、最大荷重が維持される訳ではないため、本検討で は保守的な評価を行っていることになる。

以上より,図-1に示したように,RC部材に生じるひ び割れ発生や鉄筋降伏後のひび割れ幅の増大などの損 傷が,アンカーの定着性能に大きく影響すると考えられ る。このため,こうした箇所にアンカーが設置される場 合には,ひび割れなどの損傷を考慮した照査や,埋込長 を深くする,補強するなどの対策を施す必要であると考 えられる。

(a)ひび割れが中央の場合 (b)ひび割れの影響が大きい場合 図-12 有効水平投影面積の低減に関する概念図

5. まとめ

本実験的検討の範囲で得られた主な成果をまとめる と次の通りである。

- (1) ボルト長 100mm では、ボルト長 200mm と比べて、 損傷を受けることによる引き抜き荷重の低下傾向 が大きかった。これは、埋込長が浅い場合の方がコ ーン状破壊面積はひび割れの影響を強く受けるた めであると考えられる。
- (2) 実配筋を模擬した RC 部材では、埋込長がかぶりよりも長い場合には、鉄筋の効果でコーン状破壊の破壊面積は増大する傾向が認められた。
- (3) 鉄筋降伏が生じるひび割れ程度の場合には、AIJ 式 でひび割れの影響を考慮して有効水平投影面積を 半減することにより、アンカーの引張耐力を安全側 に評価可能である。
- (4) 鉄筋降伏を超える損傷程度では、ひび割れ幅が大きくなるため、アンカーがひび割れ部から抜け出す破壊モードになる可能性がある。この場合、AIJのコーン状破壊耐力の低減係数 0.6 を下回った。

謝辞

本研究は、電力共通研究「原子力発電所鉄筋コンクリ ート製地中構造物の耐震性能照査法の高度化研究」の一 部として実施したものである。関係各位には貴重なご助 言を頂きました。ここに、謝意を表す次第です。

参考文献

- 1) 土木学会:【2012 年制定】コンクリート標準示方書[設計 編], 2013.
- 2) 日本建築学会:各種合成構造設計指針・同解説,第4編各種アンカーボルト設計指針・同解説,2010.
- 3) 河村博之:ひび割れのあるコンクリート上のあと施工アンカ ーの耐力,コンクリート工学年次論文集, Vol.18, No.2, 1996.
- 4) 日本電気協会・原子力規格委員会:原子力発電所耐震 設計技術規程, JEAC4601-2008, 2009
- 5) 美原義徳, 植木 孝, 樋口 智一, 小田島政廣:機器アン カー部の引き抜き耐力評価のための解析的研究, コンク リート工学年次論文集, Vol.28, No.2, 2006.
- 6)日本建築防災協会:震災建築物の被災度区分判定基準 および復旧技術指針,2002.