論文 RC はりのせん断強度に及ぼす収縮および破壊エネルギーの影響

川井 菜緒*1・笹田 航平*2・半井 健一郎*3・佐藤 良一*4

要旨:近年,コンクリート構造物における収縮ひび割れが問題視され,収縮抑制の観点から石灰石骨材の利用が増加している。一方で石灰岩は破砕値が大きいため,石灰石骨材を用いたコンクリートの破壊エネルギーは小さくなると考えられ,せん断強度の低下が危惧される。そこで本研究では,異なる骨材を用いたコンクリートの収縮ひずみと破壊エネルギーを調査し,それらが RC はりのせん断強度に及ぼす影響を載荷試験によって検討した。その結果,石灰石骨材を用いたコンクリートは,石英粗面岩の骨材を用いた場合と比較し,収縮と破壊エネルギーがともに小さく,RC はりのせん断強度は破壊エネルギーの低下によって低下した。 キーワード:乾燥収縮,破壊エネルギー,石灰石,せん断強度,RC はり

1. はじめに

近年,コンクリートの過大な収縮により構造物に生じ るひび割れが問題となっている。コンクリートの収縮は, 骨材の岩種によっても大きく変動し^{1),2)},2013年に改訂 された土木学会コンクリート標準示方書(以下,示方書) では,水セメント比のほか,骨材の吸水率を変数とした 収縮ひずみの特性値の簡易推定式が掲載された。また, コンクリートの収縮を低減するために,収縮の小さな石 灰石骨材の利用が増加している。

構造性能に及ぼす収縮の影響に関しても研究が進めら れている。コンクリートの収縮によって鉄筋コンクリー ト(以下, RC)はりの斜めひび割れ発生強度(以下, せ ん断強度)が低下することが明らかとなり,示方書にお けるせん断強度評価式の原式である二羽式³の鉄筋比の 算定に,等価引張鉄筋比の概念を用いたせん断強度評価 式(以下,等価式)が佐藤らによって提案されている⁴。 等価引張鉄筋比の概念とは,収縮により鉄筋ひずみ変化 量が大きくなることを,機能的には引張鉄筋比が小さく なり,引張鉄筋ひずみが大きくなることと等価であると 考えるものである。等価式では,せん断強度を引張強度 で除した τ_c/f_t と,有効高さを特性長さで除した d/l_{ch} の対 数には線形関係があるという Gustafsson & Hillerborg の 報告⁵)に基づき,収縮だけでなく破壊エネルギーの関数 としてもせん断強度の評価も行っている。

一方で、収縮低減のために使用が増えている石灰石は、 破砕値が大きく割れやすいことが知られている^{の,7)}。コ ンクリートとしての圧縮強度などには影響がないとの報 告はあるが、石灰石骨材を用いたコンクリートの破壊エ ネルギーは小さくなることが予想され、せん断強度の低 下が危惧される。前述の等価式では、収縮に加えて破壊 エネルギーの関数としてせん断強度の評価を行っている が、検証の対象としたコンクリートの破壊エネルギーに 差異がなく、実験的な検証を経たとは言い難い。

そこで本研究では、まず材料実験として、使用骨材の 岩種の違いによるコンクリートの収縮および破壊エネル ギーの差異の比較を行う。その上で構造実験を行い、両 者が普通強度 RC はりのせん断強度に及ぼす影響を分析 した。

2. 材料実験

2.1 使用材料,配合および養生条件

使用骨材の岩種の違いによるコンクリートの収縮ひず みおよび破壊エネルギーの差異を比較するため、材料実 験として強度試験、長さ変化試験、および破壊エネルギ ー試験を行った。本実験に用いたコンクリートの使用材 料および配合を表-1,2に示す。骨材には石英斑岩(QP)、 ホルンフェルス(HF)、硬質砂岩(TS)、石灰岩(LM)、 石英粗面岩(LP)を用いた。表-1において、破砕値(BS 812)の測定を行った QP、HF、TS、LMの結果も示した。 破砕値は、高剛性の円筒容器に 10mm~14mmの粒径の 粗骨材を一定容積になるように詰め込み、400kNの荷重 を載荷した後の試料が 2.36mm ふるいを通過した質量の 全質量に対する割合を百分率で表した値で、この値が大 きいと破砕しやすいことを意味する。

本実験における養生は、打込みから材齢1日まで封緘 養生とし、材齢7日までの水中養生後、温度20℃、湿度 60%の環境下において気中暴露とした。

*1	広島大学	工学部社会基盤環境工学科 (学生会員)
*2	広島大学	大学院工学研究科社会基盤環境工学専攻 (学生会員)
*3	広島大学	大学院工学研究院社会環境空間部門准教授 博士(工学) (正会員)
*4	広島大学	大学院工学研究院社会環境空間部門特任教授 工博 (正会員)

		細骨材 (砕砂)		粗骨材(砕石 2005)		破砕値
配合名	種類	表乾密度 (g/cm ³)	吸水率 (%)	表乾密度 (g/cm ³)	吸水率 (%)	(%)
QP	石英斑岩	2.52	1.33	2.63	0.49	9.9
HF	ホルンフェルス	2.66	1.55	2.72	0.56	11.7
TS	硬質砂岩	2.64	1.75	2.72	0.54	8.6
LM	石灰岩	2.67	1.26	2.71	0.39	20.0
LP	石英粗面岩	2.62	1.76	2.65	0.62	—

表-1 コンクリートの使用骨材

表-2 コンクリートの配合

				単位量	(kg/m ³)		
配合名	W/C (%)	水 W	セメント C	細骨材 S	粗骨材 G	AE 減水剤 AD	AE 剤 AE
QP				781	944	4.550	0.0070
HF				830	971	1.575	0.0210
TS	50	175	350	829	965	1.400	0.0193
LM				833	968	2.980	0
LP				789	976	2.630	0

2.2 実験方法

(1) 長さ変化試験

各配合におけるコンクリートの収縮ひずみを測定する ために、JIS A1129-2 (モルタル及びコンクリートの長さ 変化試験方法—コンタクトゲージ法)を参考とし、埋込 みひずみゲージによる長さ変化試験を行った。供試体に は 100×100×400mm の角柱供試体を各配合 1 体ずつ用 い、埋込みひずみゲージを内部に設置して、材齢7日よ りコンクリートの収縮ひずみを経時的に計測した。

(2) 強度試験

各配合におけるコンクリートの圧縮強度および静弾性 係数を調べるために,JISA1108(コンクリートの圧縮強 度試験方法)により,圧縮強度試験を行った。供試体に は直径100mm,高さ200mmの円柱供試体を用い,試験 時の材齢は28日とした。

(3) 破壊エネルギー試験

本試験は JCI-S-001-2003「切欠きはりを用いたコンク リートの破壊エネルギー試験方法」を参考とした。100× 100×400mmの角柱供試体の中央に 50mmの切欠きを設 け、3 点曲げ試験によりコンクリートの荷重-ひび割れ 開口変位および破壊エネルギーを求めた。なお、石灰岩 を用いたコンクリートは最大荷重以降に急激な荷重低下 を生じて計測が困難であったため、動ひずみ計を用いて 計測を行った。試験時の材齢は 91 日とし、試験体数は各 配合6体以上用いた。ただし、LP は材齢 91 日と 217 日 の平均値とした。

2.3 実験結果および考察

(1) 長さ変化試験

埋込みゲージによって測定された収縮ひずみの経時変 化を図-1 に示す。なお、一部の配合においては JIS A

表-3 収縮ひずみ

		式(1)によ 実験再現	式(2 推)による 定値	
配合名	β	ε' _{sh,inf} (×10 ⁻⁶)	ε' _{sh,cal1} (×10 ⁻⁶)	α	ε' _{sh,cal2} (×10 ⁻⁶)
QP	34	794	669	6	661
HF	33	808	685	5	664
TS	30	872	749	6	735
LM	35	667	561	4	573
LP	23	839	746	6	738

1129-2 のコンタクトゲージ法でも測定し,ひずみが一致 することを確認した。本試験では,材齢 131 日からの 5 日間,および材齢 160 日以降,空調機器の故障により温 度および湿度の管理ができず,正しい収縮ひずみが得ら れなかった。そのため,式(1)に示す示方書式を用いて材 齢 131 日以降の収縮ひずみを再現する経時変化曲線の推 定を行った。

 $\varepsilon'_{sh}(t,7) = \{\varepsilon'_{sh,inf} \cdot (t-7)\}/\{\beta + (t-7)\}$ (1) ここに、 $\varepsilon'_{sh}(t,7)$:材齢t日における収縮ひずみの経時変化 乾燥収縮ひずみの最終値、 β :乾燥収縮ひずみの経時変化 を表す係数とする。推定された経時変化曲線を図-1 に 合わせて示した。また、設計上の特性値となる乾燥材齢 182 日における収縮ひずみ ε'_{sh} を、実験再現値 $\varepsilon'_{sh,cal1}$ と して求め、同定されたパラメータとともに表-3 に示し た。

図-1より、コンクリートの収縮ひずみは LM が最も 小さく、QP、HF は同程度、TS、LP は比較的大きいと いう結果が得られた。このことから、一般的に言われて いるように石灰岩を骨材として用いたコンクリートは、 収縮を抑制できると言える。この理由の1つとして、骨 材の吸水率による影響が挙げられる。表-1 において、 特に細骨材の吸水率に着目すると、石灰岩の吸水率は最 も小さく、反対に石英粗面岩は最も大きくなっている。

以上の乾燥材齢 182 日の収縮ひずみは,示方書における特性値として,骨材の吸水率などから推定する式(2)が示されている。

$$\varepsilon'_{sh,cal2} = 2.4 \left\{ W + \frac{45}{-20+30 \cdot C/W} \cdot \alpha \cdot \Delta \omega \right\}$$
(2)

ここに, $\epsilon'_{sh,cal2}$: 収縮の推定特性値 (×10⁻⁶), W: コン クリートの単位水量 (kg/m³) (W≦175kg/m³), C/W:セ メント水比, α: 骨材の品質の影響を表す係数 (4~6), Δω:骨材中に含まれる水分量で、次式で求められる。

$$\Delta\omega = \frac{\omega_S}{100 + \omega_S} S + \frac{\omega_G}{100 + \omega_G} G \tag{3}$$

ここに、 ω_S および ω_G :細骨材および粗骨材の吸水率(%)、 S および G: 単位細骨材量および単位粗骨材量(kg/m³) とする。

式(2)の結果を表-3に示す。ただし、 aは 4~6 のうち $\epsilon'_{sh,cal2}$ が最も $\epsilon'_{sh,cal1}$ に近くなる整数値とした。いずれの 配合においても,式(1)によって求めた実験再現値E'sh,cal1 とよく一致した。

(2) 強度試験

0.20 0.15 0.10

500

材齢28日における力学特性を,表-4に示す。ここで, QP, HF, TS の引張強度 f_t は測定をしていないため,示 方書に基づき式(3)により圧縮強度fcから計算した。

$$f_t = 0.23 \times f_c^{12/3}$$
 (4)
(3) 破壊エネルギー試験

破壊エネルギー試験の結果として,荷重-開口変位曲 線の例を図-2 に、破砕値と破壊エネルギーの関係を図 -3 に示す。図-2はLM, LPを代表として示し,表-4 に全配合における破壊エネルギーの平均値を示した。 LPについては著者らが過去に行った実験結果®を引用し たものであり、材齢 91 日と 217 日の結果を平均した。図 -2 の LP は参考として材齢 217 日における試験結果を 示す。各配合で得られた破壊エネルギーの平均値、およ

Ж

800

700

600

図-4 収縮と破壊エネルギーの関係

乾燥材齢182日における収縮ひずみ(10-6) ♦QP ■HF ▲TS ×LM ×LP

び特性長さを表-4に示す。ここで特性長さlchは,式(4) により定義されるコンクリートの脆性さを表す指標であ り, 脆性な破壊を生じる材料ほど特性長さは小さくなる。 特性長さの算出に用いた弾性係数や引張強度は、表-4 で示した材齢28日のものを用いた。

 $l_{ch} = 1000E_c \cdot G_f / {f_t}^2$ (5)

表-4より,破壊エネルギーはLM が最も小さく,QP, HF, LP は同程度, TS はやや大きい値を示した。同様に、 LM の特性長さはもっとも小さくなり、石灰岩を骨材に 用いたコンクリートは脆性的な破壊を示すものであると 言える。また図-3より、骨材の破砕値が大きくなるこ とで、コンクリートの破壊エネルギーが小さくなったこ とが分かる。

(4) 収縮ひずみおよび破壊エネルギー

各配合における収縮の特性値と破壊エネルギーの関係 を,図-4 に示す。収縮ひずみが小さなコンクリートは 破壊エネルギーも小さくなるという傾向を示した。

3. 構造実験

3.1 使用材料,配合および養生条件

2 章において小さな収縮と破壊エネルギーを示した石 灰岩を用いた LM を用いて RC はり供試体を作製し、そ のせん断強度を調べた。収縮および破壊エネルギーの影 響は, LM よりも収縮や破壊エネルギーが大きくなった LPを用いて行った過去の実験結果⁹との比較により行っ た。使用材料および配合は2章と同一であり、表-1,2 で示す。養生方法は、材齢7日までは封緘とし、以後は 両端面をシールし4面気中曝露とした。なお、1配合に つき2バッチずつ打込みを行い,供試体名をLP-1,2お

配合記号	圧縮強度 fc (N/mm ²)	引張強度 <i>f</i> t (N/mm ²)	静弾性係数 Ec (kN/mm ²)	破壊エネルギー <i>G_f</i> (N/mm)	特性長さ <i>l_{ch}</i> (mm)				
QP	46.5	(2.97)	36.3	0.245	1010				
HF	47.9	(3.03)	32.0	0.227	791				
TS	45.3	(2.92)	35.3	0.284	1180				
LM	36.6	3.12	33.5	0.117	457				
LP	38.1	2.95	30.5	0.235	824				

※引張強度のかっこ内の数値は圧縮強度からの計算値

よびLM-1, 2とした。

3.2 供試体概要

(1) RC はり供試体

本実験で使用した RC はり供試体の概要を図-5 に示 す。せん断補強筋は用いず,有効高さを 250mm,引張鉄 筋比を 0.8%とした。載荷時の RC はり供試体の挙動に及 ぼす収縮の影響を把握するため,軸方向引張鉄筋のひず みの経時変化を図-5 に示す位置において測定した。

(2) 強度試験用供試体

JIS A1108 (コンクリートの圧縮強度試験方法) により, 圧縮強度試験を行った。供試体には直径 100mm, 高さ 200mmの円柱供試体を用いた。

(3) 無拘束供試体

コンクリートの乾燥収縮量は、比表面積によって影響 を受けるとされており、100×100×400mmの角柱供試体 を用いた長さ変化試験では、RC はり供試体の乾燥収縮 量を直接的に評価することはできない。そこで100×100 ×400mmの角柱供試体に加え、RC はり供試体のはり高 さおよびはり幅が同様であり、長さを1000mmとした無 拘束供試体を作製し、供試体中心部に設置した埋込み型 ひずみゲージによってコンクリートの自由収縮ひずみを 計測した。養生方法は RC はり供試体と同様であるが、 RC はりと同断面の供試体については両端面をシールし、 4 面からの乾燥とした。

3.3 載荷試験方法

材齢91日前後に,RCはり供試体の載荷試験を行った。 試験の概要を図-5に示す。せん断スパン750mm,等曲 げモーメント区間200mm,2点集中載荷による静的載荷 とした。載荷試験中は,荷重,はりのたわみ,せん断変 位,曲げひび割れ幅,および鉄筋ひずみを計測するとと もに,ひび割れ進展状況についても目視で観察した。

表-5 構造実験におけるコンクリートの

力学特性(材齢 91 日)

供試体名		广工相加速度 fc	引版强度 f_t					
		(N/mm ²)	(N/mm ²)	(kN/mm ²)				
IМ	LM-1	36.3	3.1	31.9				
LIVI	LM-2	34.6	3.0	31.5				
LD	LP-1	36.8	2.8	28.3				
LP	LP-2	35.2	2.8	27.0				

3.4 実験結果および考察

(1) 強度試験

本実験に用いたコンクリートの材齢 91 日における力 学特性を表-5 に示す。両配合の強度には大きな差異は 見られなかった。

(2) コンクリートおよび鉄筋のひずみの経時変化

コンクリート打込み直後からの,無拘束供試体および 100×100×400mm の角柱供試体に生じた自由収縮ひず みの経時変化を図-6に,RCはりの軸方向引張鉄筋に生 じた鉄筋ひずみを図-7に示す。図-6より,いずれの配 合においても角柱供試体の方が 200×10⁻⁶程度収縮が大 きくなった。また、2章と同様に、コンクリートの収縮 は石灰岩を用いた LM の方が、石英粗面岩を用いた LP に比べて小さくなった。コンクリートの収縮によって鉄 筋に生じる圧縮ひずみ(負の鉄筋ひずみ)は、図-7 に 示すように、コンクリートの収縮の小さな LM の方が小 さくなった。

(3) ひび割れ状況

各供試体の斜めひび割れ発生荷重と破壊時のひび割れ 状況を図-8に、載荷試験結果を表-6に示す。全ての供 試体において、発生した斜めひび割れが載荷点下に潜り 込み、斜めひび割れ発生後もアーチ機構に移行すること で直ちには破壊に至らなかった。破壊時には、全ての供 試体において等曲げモーメント区間内の圧縮縁コンクリ ートで圧壊が生じ、せん断圧縮破壊となった。このとき、 ひび割れがより内側に生じている LM-1 および LP-1 で は、外側にひび割れの生じた LM-2 および LP-2 よりも最 大荷重が大きくなった。今回の実験からは、骨材の違い によるひび割れ性状の明確な差は確認されなかった。

(4) 載荷試験結果

荷重-たわみ関係を図-9 に、荷重-鉛直変位関係を

図-8 破壊時のひび割れ状況

表-6 載荷試験結果

	載荷	載荷直前の	斜めひび割	最大	せん断		二羽式			等価式	
供試 体名	材齢 (日)	鉄筋ひずみ ^{を s0} (×10 ⁻⁶)	れ発生荷重 <i>P</i> (kN)	荷重 Pmax (kN)	強度 <i>τ c,exp</i> (N/mm ²)	τ _{c,cal} (N/mm ²)	τ c,exp / τ c,cal	τ _{c,exp} /τ _{c,cal} 平均	τ _{c,cal} * (N/mm ²)	τ c,exp / τ c,cal*	τ c,exp / τ c,cal* 平均
LM-1	88	-25	116	162	1.16	1.06	1.10	1.09	1.05	1.11	1.00
LM-2	84	-17	111	129	1.11	1.04	1.07	1.08	1.03	1.08	1.09
LP-1	99	-96	140	177	1.40	1.06	1.32	1.20	1.03	1.36	1.25
LP-2	101	-131	133	151	1.33	1.04	1.27	1.50	1.00	1.33	1.55
			100					100			
ł			180					¹⁸⁰ Г			

6 8 10

たわみ(mm)

(b) LP

12

0

0 2 4

図-10に、荷重-せん断変位関係を図-11に示す。ここ で鉛直変位は図-5において鉛直方向に設置した変位計 の値であり、せん断変位は鉛直・水平方向に設置した 4 つの変位計とその内部に斜め方向に設置した 2 つの変位 計を用いて計算した値である。鉛直変位およびせん断変 位は複数個所で計測したが、図-8において青の実線で 示したように、破壊側のせん断スパンに発生した斜めひ び割れが通過した位置での計測結果を掲載した。図-9~ 図-11において、斜めひび割れ発生荷重を〇印で示した。 斜めひび割れ発生荷重は、図-8において太線で示した 斜めひび割れが鉛直方向の変位計を通過した場合(LM-1、LP-1)は図-10、上下に設置した水平方向の変位計を 通過した場合(LM-2、LP-2)は図-11により変位が急 増する際の荷重として決定した。

10

たわみ(mm)

(a) LM

12

図-9 荷重-たわみ

0

0 2 4 6 8

表-6に実験値と、二羽式³⁾および等価式を用いたせん断強度の計算値を示す。等価式を次式に示す。

$$\tau_{c,cal*} = 0.20 f_c'^{\frac{1}{3}} (100 p_{s,e})^{\frac{1}{3}} \left(\frac{d}{1000}\right)^{-\frac{1}{4}} \left(0.75 + \frac{1.4}{a/d}\right)$$
(6)

ここに、 $p_{s,e}$:等価鉄筋比,d:有効高さ (mm),a:せん 断スパン (mm) とする。ここでの等価式は、二羽式に等 価鉄筋比 4^{0} の概念を導入して鉄筋比 p_{s} を等価鉄筋比 $p_{s,e}$ に置き換えたものであり、破壊エネルギーについては考 慮していない。

両供試体における実験値を比較すると、LM の方が 2

	実験値/算	章定値	特性長さ		
	$\tau_{c,exp} / \tau_{c,cal}*$	LP/LM	$l_{ch}(mm)$	LP/LM	
LM	1.09	1.24	457	1.90	
LP	1.35	1.24	824	1.80	

表-7 せん断強度比と特性長さ

割程度小さくなっている。圧縮強度に大きな差は見られ ないため、二羽式による計算値との比較でも両者の差は ほぼ変わらないが、収縮を考慮した等価式による計算値 との比較ではせん断強度の差が大きくなった。よって、 LM の破壊エネルギーが小さいことでせん断強度が低下 したと考えられる。

表-7 に実験値を等価式による計算値で正規化して圧 縮強度および収縮の影響を除いた $\tau_{crexp}/\tau_{crcal*}$ と,特性長 さ l_{ch} を示す。 $\tau_{crexp}/\tau_{crcal*}$ の LM と LP の比は l_{ch} の比の およそ 1/3 乗となった。さらにデータを集積する必要は あるが、このことは RC はりのせん断強度がコンクリー トの特性長さが小さくなる骨材を用いた場合、その特性 長さの 1/3 乗に比例して低下する可能性を示唆している。 なお、Gustafsson & Hillerborg の報告 ⁵⁾では τ_c/f_t と d/l_{ch} についての関係を示しているが、本実験では有効高さが 同一で、弾性係数や引張強度に大きな差が見られないた め、 τ_c および l_{ch} の関係とした。また高強度 RC はりにお いては、引張強度および有効高さが同一であった場合、 RC はりのせん断強度は特性長さの 2/5 乗に比例して低 下すると示されている⁴。

4. まとめ

本研究では骨材の岩種の違いによるコンクリートの材 料特性を調査し, RC はりの載荷試験を行うことで, コン クリートの収縮と破壊エネルギーがせん断強度に及ぼす 影響を検討した。本研究の範囲内で得られた結論を以下 に示す。

- (1) 骨材の破砕値が大きくなると、コンクリートの破壊エネルギーが小さくなった。また、収縮ひずみが小さなコンクリートは、収縮ひずみが大きなコンクリートと比べ、破壊エネルギーが小さくなる傾向を示した。
- (2) コンクリートの収縮ひずみの小さい石灰岩を用いた RC はりでは、収縮ひずみの大きい石英粗面岩を用いた RC はりと比較し、コンクリートの収縮によって生じる鉄筋の圧縮ひずみが顕著に小さくなった。
- (3) 石灰岩を用いたコンクリートと石英粗面岩を用い たコンクリートの圧縮強度や引張強度はほぼ同じ

であったが、石灰岩を用いた RC はりのせん断強 度は、石英粗面岩を用いた RC はりと比較して約 20%低下した。等価鉄筋比の概念でコンクリート の収縮の影響を補正すると、せん断強度の低下は より大きく評価され、石灰岩を用いたコンクリー トの破壊エネルギーが小さいことによる影響が考 えられた。また、収縮の影響を補正した RC はり のせん断強度は、特性長さの 1/3 乗に比例して低 下する可能性を示唆した。

(4) 今後はさらにデータを集積し、本結論の信頼性を 向上させたい。

参考文献

- 後藤幸正・藤原忠司:コンクリートの乾燥収縮に及 ぼす骨材の影響,土木学会論文報告集,第 286 号, pp125-137, 1979.6
- 今本啓一ほか:各種骨材を用いたコンクリートの乾燥収縮特性と骨材比表面積の影響,日本建築学会論 文集,606号,9-14,2006.8
- 二羽淳一郎ほか: せん断補強筋を用いない RC はりのせん断強度式の再評価, 土木学会論文集, No.372/V-5, pp.167-176, 1986.8
- 河金甲・佐藤良一:高強度 RC はりの斜めひび割れ 発生強度に及ぼす収縮の影響,土木学会論文集 E, Vol.65, No.2, pp.178-197, 2009.4
- Gustafsson, P.J. and Hillerborg, A. : Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams to Fracture Energy of Concrete, *ACI Structural Journal*, Vol.85, Issue 3, pp.286-294, 1988.
- 6) 井上正一:石灰石骨材を用いたコンクリートにおける石灰石微粉末未使用ルールの策定,国土交通省中国地方整備局受託研究報告書,pp.11-12,2009.
- 小畠明ほか:石灰石砕石を用いたコンクリートの強 度特性,コンクリート工学年次論文集, Vol.26, No.1, pp.93-98, 2004.
- Kawamura, K., et al : Properties of Concrete Containing a Molten Slag as Fine Aggregate, First International Conference on Concrete Sustainability, pp.252-259, 2013.5
- 9) 笹田航平ほか:引張鉄筋比の異なる RC はりのせん 断強度に及ぼす収縮・膨張の影響に関する一考察, 第65回土木学会中国支部研究発表会概要集, V-3, 2013.