報告 佐賀関第一大煙突解体コンクリートによるサンプリング調査

竹内 博幸*1・荒金 孝行*2・西 毅*2・内田 直利*3

要旨:竣工時(1916年)高さ167.63mと世界一を誇った「佐賀関第一大煙突」¹⁾解体工事にあたり,100年近 く経過した鉄筋コンクリート構造物が,厳しい環境下に長期間置かれた結果,どの程度の劣化状態にあるか, また,コンクリート,鉄筋がどのような状態にあるのか,それは現在の鉄筋コンクリート構造物と比較して どのように違っているのか,などを調査する目的で,解体片からのサンプリングによるコンクリートおよび 鉄筋に関する各種の関連試験を行った。その結果,コンクリートの圧縮強度はばらつきがあるものの,概ね 30N/mm²前後であり,鉄筋の腐食もそれほど見られず,強度性状も現在の鉄筋に近い状態であった。 キーワード:煙突,鉄筋コンクリート造,1916年竣工,塩化物量,鉄筋腐食

1. はじめに

「佐賀関第一大煙突」解体工事にあたり,100 年近く 経過した鉄筋コンクリート構造物が,厳しい環境下に長 期間置かれた結果,どの程度の劣化状態にあるのか,コ ンクリート,鉄筋がどのような状態にあるのか,それは 現在のそれらと比較してどのように違っているのか,な どを調査する目的で,解体片からのサンプリングによる コンクリートおよび鉄筋に関する各種関連試験を行った。 なお,試験対象が高所から落下した解体片であるため, 落下時に脆弱な部分が既に失われ,供試体が落下による 衝撃に耐えた部分となる可能性がある。したがって,本 報告の試験結果は,当該構造物の脆弱部を含めた評価結 果になっていない可能性があることをあらかじめ言及し ておく。

2. 実施方法

2.1 概要

「第一大煙突解体工事」の本体解体工事を進めながら, 発生する解体片を一定間隔(@30m)で所要分サンプリ ングしたものを確保しておき,後日所定の各種試験を行 った。サンプリングの概要を図-1に,供用時における

E	
	摘要
用途	銅製錬の排煙処理
配筋	主筋: 28.6~ 12.7 ^{*1)} @120(下部)~@350(上部) せん断補強筋: 19@150
ライニング	GL-45.72mまで2重壁(内壁:t=120)
所在地	海から約1km、標高 126.49m
注1*1) :1	

表 - 1 佐賀関第一大煙突の諸元

*1 五洋建設(株)技術研究所 建築技術開発部 (正会員)

*2 パンパシフィック・カッパー(株)佐賀関製錬所 技術部設備技術課

*3 五洋建設(株)九州支店 大分営業所

煙突の俯瞰を写真 - 1示す。また,建造物としての諸元 を表 - 1に示す。なお,解体は,煙突頂部まで届くクレ ーンのジブの先端に破砕装置を取り付けて上部から始め ている。したがって,破砕して切り取られた解体片は, 当該高さから地面に直接落下することになる。

図 - 1 サンプリングの概要

2.2 実施項目

(1) コンクリート

解体片の中,コンクリートに関して実施した試験項目 と方法について表 - 2 に示す。

(2) 鉄筋

解体片の中,鉄筋に関して実施した試験項目と方法に ついて表-3に示す。

(3) その他

解体片の中,骨材と打継ぎ部に関して実施した試験項 目と方法について表-4に示す。

調査項目	試験項目	試験方法	摘要	頻度·回数
解体片の状態	劣化状態	目視観察	変状が認められる場合	1回@30m
	圧縮強度	JIS A 1107	コア 100×200、解体片貫通採取 ¹⁾	×3 @30m+煙道
コンクリート	静弹性係数	JIS A 1149	コンプレッソメータ, 圧縮試験時	×3 @30m+煙道
強度性状	動弾性係数	JIS A 1127	コア 100×3	×3 @30m+煙道
	[反発度] ²⁾	JIS A 1155(参考)	リバウンドハンマー	×1 @30m+煙道
	組成分析	配合推定	セメント協会法 ³⁾	×2 @30m+煙道
	組成分析	粉末X線回折	結晶物質の同定・定量	×1 @30m+煙道
コンクリート	細孔径分布	水銀圧入法	試料∶モルタル 2.5~5 mm	×1 @30m+煙道
が日辺	EPMA ⁴⁾	定量分析	分析対象∶S,CI	×1 @30m+煙道
	文献による確認	関連文献参考	煙突 C:S∶G = 1∶2∶4	煙突部,煙道部
	中性化深さ	JIS A 1152	外表コア割裂 フェノールフタレイン	×3 @30m+煙道
耐久性	塩化物量	JIS A 1154	全塩分量試験∶壁厚方向@20mm	×1 @30m+煙道
	鉄筋発錆状態	目視観察	腐食段階判定(~)	×3 @30m+煙道

表-2 コンクリート関連試験項目

注] 1) コア供試体は,解体片から貫通採取し,成形する。内外方向が分かる場合は外周側から採取する。 2) コア採取の解体片が12kgを超え,安定した状態で打撃できる平滑な面を有した場合に実施する。

3) 石灰系骨材を含む場合は、「グルコン酸ナトリウムを用いる方法」による。

4) EPMA(電子線マイクロアナライザー)は、イオウ(S)と塩素(Cl)について定量分析する。

表 - 3 鉄筋関連試験項目

調査項目	試験項目	試験方法	摘要	頻度·回数
鉄筋の	引張強度	JIS Z 2241	主筋、せん断補強筋	×3 @30m+煙道
強度性状	静弹性係数	JIS Z 2241 +	ワイヤレス・ストレインゲージ	×3 @30m+煙道
鉄筋の付着	付着強度	引抜き試験	万能試験機+球座	×3 @30m
	腐食(発錆)状態	目視観察	腐食段階判定(~)	×3 @30m+煙道
鉄筋の腐食	腐食面積	画像処理	腐食面積率の算定	×3 @30m+煙道
鉄肋の腐良	腐食量	洗い試験 JCI-SC1	クエン酸溶液処理による質量・ 断面積の低減量	×3 @30m+煙道
鉄筋の組成	組成分析	粉末 X 線回折	結晶物質の同定・定量	×3 @30m+煙道

表 - 4 その他試験項目

調査項目	試験項目	試験方法	摘 要	頻度·回数
骨材	各個·混合状態	目視観察	破砕·欠損、分散状態	×3 @30m+煙道
	岩種特定	顕微鏡観察	鉱物種による識別	×1 @30m+煙道
打継ぎ	近傍の状態	目視観察	打継ぎ面・近傍の状態	×3 @30m+煙道
	中性化深さ・範囲 JIS A 1152		半割コア フェノールフタレイン	×3 @30m+煙道
	鉄筋発錆状態	目視観察	腐食段階判定(~)	×3 @30m+煙道

3. コンクリート関連試験の実施結果

各試験の結果は,紙面の都合上,主要な項目について のみ報告する。

3.1 コンクリート強度性状

表-5に,コンクリートの力学性状に関する各試験結 果について並列して示す。なお,表-5の試験結果は, 試験値の平均と標準偏差(())内の数値)を示している。

各高さ位置におけるコア圧縮強度は,煙道部を除いて 概ね 30N/mm²近傍と普通強度の範囲であった。この傾向 は,コア供試体による静弾性係数や動弾性係数も同様で あり,試験値の分散傾向からみると,圧縮強度よりもや や安定的であった。

一方で,煙道部に著しい高強度領域の試験値が見られ たのは,配合,施工条件や環境・養生条件などが複合的 に作用して,局部的に発現したものと考えられる。

採取	No	圧縮 (N/:	強度 ¹⁾ mm ²)	静弾 (kN/	性係数 ′mm²)	動弾性係数 ²⁾ (kN/mm ²)		
場所名値		各値	平均 3)	各値	平均 ³⁾	各値	平均 3)	
	1	40.3		27.1		32.0		
_ 煙道 1	2	65.3	48.1 (12.2)	40.3	30.7 (6.9)	40.1	34.1 (4 3)	
	3	38.6	(.=.=)	24.6	(0.0)	30.3	()	
	1	27.0		23.0		27.8		
/煙道 2	2	31.6	30.3 (2.4)	20.0	22.7 (2.1)	25.6	27.7 (1.7)	
	3	32.3	()	25.0	()	29.7	(,	
栖空	1	25.3		18.7		25.4		
及 0~	2	36.3	28.3 (5.7)	23.5	20.7 (2.0)	31.3	27.3 (2.8)	
30m	3	23.3	(0.1)	20.0	(2.0)	25.2	(2.0)	
煙突	1	34.8		23.7	20.9 (6.2)	23.0		
/建天 30~	2	35.5	30.9 (6.0)	26.8		31.1	27.4 (3.4)	
60m	3	22.4	(010)	12.3	(0.2)	28.2	()	
煙突	1	25.5		22.7		28.5	27.2 (1.6)	
60~	2	27.1	24.9 (2.1)	21.1	21.1 (1.3)	28.2		
90m	3	22.0		19.6	(-)	24.9	(-)	
煙突	1	28.3		21.7		30.4		
90~	2	44.3	33.5 (7.6)	29.4	25.4 (3.1)	34.5	31.6 (2.0)	
120m	3	28.0	. ,	25.2		30.0	. ,	
煙突	1	33.5		25.5		30.2		
120 ~	2	40.8	34.9 (4.4)	28.3	26.0 (1.7)	31.7	30.0 (1.5)	
150m	3	30.4	. ,	24.3		28.1	. ,	
煙突	1	[26.8]	100 01	-		-		
150m	2	[27.5]	[28.8] (2.4)	-	-	-	-	
~	3	[32.2]		-		-		

表 - 5 コンクリートの圧縮強度関連試験結果

注] 1) [] 内の数字は、JIS A 1107 による補正後の強度値。 2) 動弾性係数は、JIS A 1127 による縦振動。

3) ()内の数字は標準偏差を示す。

また,煙突部 60~90mの圧縮強度が相対的にやや低め ではあるが,推定される当時の設計基準強度を十分に満 足しており,総体的には良好な材料・施工であったと推 察される。

3.2 コンクリート組成

表 - 6 に,配合推定結果と配合に関連すると考えられ る各種試験結果を並列して比較した。なお,煙道と煙突 部の設計配合は異なり,後者は,セメント:砂:砂利=1: 2:4 であった。また,表中の平均と標準偏差は,煙突部 の試験値について算定されている。

配合推定による水セメント比は,煙突部30~60mでや や低い値が見られ,煙突部120~150mではやや高い値が 見られたが,それ以外はいずれも煙突部の平均に近い範 囲であった。

同位置の2試料間に相応の差違が見られるのは,配合 推定試験自体に含まれる誤差要因に加えて,当時骨材の 水量管理が十分でなかったこと,温度・湿度などの環境 因子による水量調整が確立されていなかったことなど が,影響を及ぼしたものと考えられる。

採取	No	単位 (kg/	Z量 m³)	W/C	圧縮 (N/n	強度 nm²)	平均 細孔直径	
場所		セメント	水	(%)	各値	平均	(µm)	
煙道	1	330	167	50.6	40.3	19.1	2.35 × 10 ⁻²	
1	2	309	168	54.3	38.6	40.1	2.59 × 10 ⁻²	
煙道	1	313	180	57.4	27.0	20.2	1.44 × 10 ⁻²	
2	2	316	193	60.9	32.3	30.3	1.51 × 10 ⁻²	
煙突	1	356	194	54.0	25.3	20.2	5.66 × 10 ⁻²	
0 ∼ 30m	2	332	185	58.6	23.3	20.3	6.81 × 10 ⁻²	
煙突 20~	1	342	196	54.1	34.8	20.0	1.15 × 10 ⁻¹	
60m	2	456	194	39.6	22.4 30.9		8.25 × 10 ⁻²	
煙突	1	360	176	54.5	25.5	24.0	1.28 × 10 ⁻²	
90m	2	394	191	49.4	27.1	24.9	1.39 × 10 ⁻²	
煙突	1	375	181	48.0	28.3	22 E	1.57 × 10 ⁻²	
90~ 120m	2	374	160	47.0	44.3 28.0	33.5	1.62 × 10 ⁻²	
煙突 120	1	322	168	59.4	33.5	20.0	2.24 × 10 ⁻²	
~ 150m	2	271	180	74.8	40.8 30.4	30.0	2.61 × 10 ⁻²	
煙突	1	405	192	44.6	26.8	20.0	2.72 × 10 ⁻²	
~	2	323	194	49.6	32.2	20.0	2.35 × 10 ⁻²	
平均	1)	359	184	52.8	30).2	3.92 × 10 ⁻²	
(標準條	美)	(45)	(11)	(8.6)	(6.1)		(3.10 × 10 ⁻²)	

表 - 6 配合推定と関連試験結果の比較

注] 1) 平均と標準偏差は, 煙突部の試験値により算定。

煙突部 0~60mにおける細孔平均直径が他より突出し ているため,全体的にコア圧縮強度と細孔平均直径の関 係は明らかではないが,その2データを除外すると,細 孔平均直径は圧縮強度に関わらず,ほぼ一定範囲に止ま ることが分かる。これより,耐久性の指標である細孔径 は、強度値と明確な相関は見られないが,ある一定範囲 内の強度値に対しては,ほぼ近似した平均径を示すこと が類推される。

また, EPMA 分析の結果, 分析対象とした成分の分布 状態は以下の通りである。なお, EPMA 分析は, 排気に よる影響と飛来塩分量を確認することを主な目的とした が, 煙突部の内側と推察される変色部分を対象として行 った。

- ・S(イオウ): 全般的に対象面全体に薄く分布している 場合が多いが,分布状態にやや差違が見られる。
- ・Cl(塩素):低所部ではほとんど分布は見られないが, 高所部では薄く分布している。

Sは,排煙にも含まれる成分であるが,試料の採取位置や高さによる分布の違いは明確には現れていない。

Clは,塩化物量が高所部に移行するに従い多くなって いたことから,塩化物量の分布傾向に合致している。 3.3 コンクリートの耐久性

表 - 6 に,コンクリートの耐久性に関連する中性化お よび塩化物量の各試験結果を一括して示す。なお,両試 験は,別々に採取したコア供試体を用いて実施している が,前者については,煙突部表面から測定できるように 供試体を設定したが,後者については供試体の内外は明 確ではない。

中性化深さについては, 煙突部 0~30mを除いて, いずれも極めて小さい試験値を示している。同 0~30mの 箇所についても中性化深さは最大 50mm であり, 耐用期 間や周辺環境を考慮すると決して大きな数値ではない。

一方,塩化物量は,試験値を単位容積あたりに換算す ると,いずれも建築における基準値(0.30kg/m³以下) を大きく超え,煙突部 60m以上の部分については,土木 における腐食限界値(1.2kg/m³)をはるかに上回る塩化 物量となった。

コンクリートの耐久性状に深く関係する両試験結果の 間に,このような違いが表出したのは,当該案件が沿岸 部近傍に位置していたため,ほぼ全周方向から飛来塩分 の影響を長期間にわたって受けていたのに対し,中性化 の発生要因である二酸化炭素濃度は,沿岸部近傍であっ ても,内陸部と大きく変わらないため,また,細孔径分 布試験結果などからも伺えるように,約100年前の施工 とは言え,比較的緻密なコンクリート組成であることか らも,中性化の進行については,地上部と同様に比較的 よく抑制されていたものと考えられる。

表-6 耐久性関連試験結果

試験	体		中性化	深さ(mn	n) ¹⁾	塩化物量(w/w%)		塩化	
場所·位	置	内外	平均	全体	最大	最大 2)	平均 3)	初重 ⁻⁷ (kg/m ³)	
1	1		0		0				
煙道 1	2	外側	0	3	1	[2-4] 0.016	0.007	0.387	
	3	171	10		15	0.010	[0.000]		
177.144	1		1		5	10.01			
煙道 2	2	外側	0	1	0	[0-2] 0.02	0.005	0.469	
-	3	171	0		2	0.02	[0.007]		
	1		45		48				
0~ 30m	2	外側	46	39	50	[2-4] 0.039	0.018	0.908	
	3	17.3	25		28	0.000	[0.003]		
30~	1		30	10	35	[10-12]	0.016		
60m	2	内側	0		0			0.836	
内側	3	17.1	0		0	0.035	[0.011]		
	1		12	2	15	14 01			
60 ~ 90m	2	囚側	13	8	12	[4-6] 0 139	0.048	3.235	
	3	1713	0		0	0.100	[0:010]		
	1	-	5		6	[4 0]	0.045		
90 ~ 120m	2	例	6	4	7	[4-6] 0.139	0.045	3.262	
	3		0		0	01100	[01000]		
400	1	-	0		0	[4 0]	0.040		
120 ~ 150m	2	例	0	2	0	[4-6] 0.124	0.042	3.024	
	3		5		6		[]		
	1	-	0		0	[2] 4]	0.026		
150m	2	例	0	2	0	[2-4] 0.129	0.036	3.090	
150m	3		5		6		[0.030]		

注] 1) 解体片の平面位置により対象が内側あるいは外側となる。

2) []内は最大値を示した深さ位置(cm)を示す。

3) []内は標準偏差を示す。

4) 塩化物量最大値に配合推定による単位質量を乗じて算出。

4. 鉄筋関連試験の実施結果

4.1 引張試験

表 - 7 に,各試験結果について,同時期に建設された 大規模な RC 造煙突(日立大煙突)の試験値および現在 の JIS 規格と比較したものを示す。佐賀関大煙突では, 鉄筋は米国製の角型鋼(15.8~28.8)を用いている。 ただし,煙道部や基礎部では,国産の丸鋼を用いた。な お,日立大煙突は,佐賀関大煙突の供用2年前に茨城県 日立市に建造された RC 造の高さ155.8mの大煙突で,佐 賀関が内足場方式で施工されたのに対し,外部総足場方 式で,外部に揚重設備を設けて施工された。いずれも1 年を要さない短工期で供用に到っている。

表 - 7より,応力度については,降伏点,最大値とも, いずれも JIS 規格値を超えており,日立大煙突に比較し ても大きく超えている。また,降伏点応力度より最大応 力度の方が,同規格値を上回る度合いが大きいため,(降 伏応力/最大応力)は JIS 規格や日立大煙突のそれより 小さくなっている。

鉄筋	±0±2	鉄筋径	応力度(I	N/mm ²) ²⁾	降伏	静弹性	破断	ひずみ⁵	/# *
が役	况怕	(mm)	降伏点	最大	, 最大	1茶釵 ⁶⁷ (N/mm ²)	伸びが (%)	(%)	佣亏
15.8		15.91 (0.08)	359.8 (29.3)	633.4 (18.3)	0.568	180.1 (10.1)	17.14 (2.85)	19.34	米国製
19.6		19.04 (0.51)	299.4 (6.1)	566.9 (23.0)	0.528	170.0 (10.6)	13.42 (2.93)	18.87	"
22.3		22.45 (0.19)	350.4 (10.1)	590.7 (11.1)	0.594	189.7 (6.9)	17.55 (2.74)	17.24	"
26.6		25.87 (0.18)	318.7 (11.1)	591.1 (11.2)	0.539	189.0 (2.2)	22.62 (0.39)	20.80	"
28.8		29.02 (0.18)	294.1 (10.8)	591.1 (11.2)	0.520	176.0 (14.5)	20.88 (5.76	19.46	"
31.9		31.80 (0.08)	312.7 (18.1)	470.8 (41.7)	0.664	208.0 (0)	27.94 (5.84)	22.88	国産
日立 煙突 ¹⁾		D11.1 ~ D28.6	274	359	0.763	169	-	-	建築学会 大会論文
JIS	SD205	16 以下	295	440	0.670	-	16	-	
規格	30293	16 超	295	440	0.670	-	17	-	

表 - 7 引張試験結果比較一覧

注] 1) 日本鉱業・日立大煙突(1914年竣工)に関する建築学会大会論文(1996年)より。

2) ひずみ 0.2%から約 0.1%の弾性係数を用いた平行線から算定している降伏点強度による。

3) ひずみ 0~0.1%における直線の傾き。 4) 試験区間内での破断における試験区間内の伸び。

5) 測定における最大ひずみの平均値。()内は各試験値の標準偏差を示す。

静弾性係数は,通常の現代における鉄筋のそれよりも やや小さいものの,日立煙突で使用されていた鉄筋の静 弾性係数より全般的に大きくなっている。

また,破断伸びは, 19.6 などは JIS 規格値を下回っ ているが,引張試験時に測定されたひずみ値は,いずれ も 170000µ(=17%)を超えていることから,潜在的に は伸び能力はそれほど低下していないものと考えられる。 4.2 付着試験

表 - 8 に,今回の試験結果と予測値を比較したものを 示す。同表中の網がけ部分は,最大荷重値を下回る耐力 値を示している。また,図 - 2 に,試験体ごとの引張荷 重と変位の関係を示す。

試験体コンクリートと鉄筋の界面にひび割れが発生し, 鉄筋が完全に抜け出した試験体3を除き,いずれの試験

	鉄筋	関連	測定	自住				
試験体 No.	形状 ·径 (mm) ¹⁾	付着長 (mm) ³⁾	最大 荷重 (kN)	最大時 変位 (mm)	降伏 Try	引張 Tru	付着 Tbu ³⁾	破壊 モード
1	10.0	100	38.61	4.71	36.27	63.85	27.55	付着破壊
2	16.6	172	57.07	2.13	99.20	174.63	70.12	付着破壊
3	16.0	148	6.67	25.08	62.98	94.82	51.15	界面割裂
4	8.3	182	21.23	0.02	24.68	43.45	37.66	溶接部切断
5	9.6	204	38.69	0.03	33.39	58.78	53.81	溶接部切断
6	14.2	152	60.21	0.13	49.50	74.53	48.61	付着破壊
7	10.1	168	27.64	0.01	36.59	64.42	66.97	溶接部切断
8	9.5	149	37.99	0.04	32.24	56.75	69.42	溶接部切断
9	9.8	154	37.49	0.00	34.54	60.81	85.42	溶接部切断
10	16.1	150	83.92	0.45	92.97	163.67	69.15	溶接部切断
11	16.2	167	72.77	2.89	94.09	165.63	67.21	付着破壊

表 - 8 鉄筋付着試験結果

注] 1) 鉄筋径は,2箇所の実測値の平均 2) 断面積は,実測値による。

3) 付着長さは,鉄筋埋込み部の実測値
4) 付着面積は,鉄筋径の実測値と付着長さの実測値による。
網がけ部分は,最大荷重を下回る耐力値を示す。

体も比較的少ない鉄筋の引抜け量にとどまり,図-2に 示すように,荷重低下後も鉄筋が大きく変位するような 動きは見られなかった。

いずれにしろ,試験体採取元が,高所における解体片 で,落下による衝撃を受けた後であっても,鉄筋は埋込 み長さやコンクリート強度に合わせて計算で示されるの と同程度以上の抵抗値を示し,その現象は付着長 10d 前 後(例えば,試験体 10 は付着長 9.3d,同 11 は 10.3d,d: 鉄筋径)でも比較的安定して見られた。

図 - 2 付着試験における荷重と変位の関係

表 - 9 粉末 X 線回折結果

種類 摘要	按西	坦坡		wt.	.%			mo	1.%		供去
	 何女	况伯	Fe	Mn	0	Si	Fe	Mn	0	Si	涌石
26.6	米国製	-	97.378	1.266	1.356	-	94.177	1.244	4.579	-	煙突部
D13	日本製	SD295B	96.094	1.616	2.034	0.256	91.218	1.559	6.739	0.484	比較用

4.3 組成分析

各鉄筋の粉末X線回折結果から質量比とmol.比を抽出 したものを表 - 9に示す。

これらより, Fe と Mn の量は現代の鉄筋と比較しても それほど違わないが, Si が抽出されず, O の量がやや少 ない傾向にある。なお,今回の回折では,C(炭素)が 抽出されなかったため,解体片から別に採取された鉄筋 について,燃焼 - 赤外線吸収法によりC量を分析した結 果,0.37~0.48 wt.%であった。また,日立大煙突におけ る鉄筋のC量は,異形0.050 wt.%,丸鋼0.07 wt.%(い ずれも米国製)²⁾,現在の鉄筋のC量は,0.27 wt.%³⁾で あることから,佐賀関大煙突の鉄筋がいずれをも上回っ ていることが分かる。

5. まとめ - 現代との比較

(1) コンクリート

各高さ位置におけるコア圧縮強度は,煙道部を除いて 概ね30N/mm²近傍であり,現代においても普通強度の範 囲であった。この傾向は,コア供試体による静弾性係数 や動弾性係数も同様であり,試験値の分散傾向からみる と,圧縮強度よりもやや安定的であった。中性化深さは, いずれも小さい値であったのに対し,塩化物量は,煙突 部60m以上の部分は,土木の腐食限界値をはるかに上回 る試験結果となった。これは,当該案件が,ほぼ全周方 向から飛来塩分の影響を長期間にわたって受けていた のに対し,中性化の発生要因である二酸化炭素濃度は, 内陸部と大きく変わらないため,約100年前の施工とは 言え,比較的緻密なコンクリート組成であることからも, 中性化の進行については,比較的よく抑制されていたと 考えられる。総体的には,現代であっても良好な材料・ 施工であると評価できる。

(2) 鉄筋

現行の JIS 規格や同時期に建設された RC 造煙突(日 大煙突)と比較については以下の通り。

応力度については,降伏点,最大値とも,いずれもJIS 規格値を超えており,日立煙突に比較しても大きく超え ている。また,降伏点応力度より最大応力度の方が,同 規格値を上回る度合いが大きいため(降伏応力/最大応 力)はJIS規格や日立煙突のそれより大幅に小さくなっ ている。静弾性係数は,通常の現代における鉄筋のそれ よりもやや小さいものの,日立煙突で使用されていた鉄 筋の静弾性係数より全般的に大きくなっている。破断伸 びは,JIS規格値を下回っている種類もあるが,引張試験 時に測定されたひずみ値は,いずれも170000µ(=17%) を超えていることから,潜在的な伸び能力はそれほど低 下していないものと考えられる。引抜き試験の結果,落 下による衝撃を受けた後であっても,鉄筋は計算で示さ れるのと同程度以上の抵抗値を示し,その現象は付着長 10d前後でも比較的安定して見られた。

参考文献

- 1) 日本鉱業株式会社五十年史編集委員会編:五十年の あゆみ, pp.51-59,1957
- 上野謙之助,永田英敏,五関直一,下川祐一:日本 建築学会大会学術講演集(近畿),1996年9月
- 日本規格協会: JIS G 3112 鉄筋コンクリート用棒鋼, pp.2,2010