報告 高炉スラグ高含有セメントを用いたマスコンクリートの温度ひび割 れ抵抗性に関する基礎検討

閑田 徹志^{*1}・稲葉 洋平^{*2}・石関 浩輔^{*3}・小島 正朗^{*4}

要旨:高炉スラグ高含有セメントを用いたコンクリート(BC コンクリート)は、環境負荷低減のため有効であ るだけでなく、温度ひび割れ抵抗性にも優れることが期待される。本研究では、BC コンクリートの発熱特性、 温度上昇量、温度下降に伴う収縮ひずみ、自己収縮を含む見かけの線膨張係数について実験的に検討すると ともに、温度解析によりマスコンクリート部材の温度履歴の再現を試みる。検討の結果、BC コンクリートは 温度上昇量、収縮ひずみ、見掛けの線膨張係数が小さく、温度ひび割れ抵抗性に優れることが明らかとなっ た。また、マスコンクリート部材の温度履歴は、FEM 解析により再現可能であるが、打込み温度の影響の反 映に課題が残った。

キーワード:高炉セメント,高炉スラグ微粉末,温度ひび割れ,水和熱,自己収縮,線膨張係数

1. はじめに

コンクリート材料の環境負荷の多くは、セメント中の クリンカを起源とし、負荷低減にはクリンカ分を副産物 混和材料で代替することが有効である^{1,2)}。この混和材料 としては、高炉スラグ微粉末が代表的で、クリンカを大 量置換した結合材によるコンクリートの開発が活発であ る。しかし、これらコンクリートは、中性化速度が比較 的早いため、土に接するなど外気に曝されない場合が多 い、大断面のためかぶり厚さを大きくし易いなどの条件 から、地下部材により適している。したがって、同コン クリートは、温度ひび割れ抑制にも優れた性能を有する ことが望ましい。

筆者らは、高炉スラグ高含有セメント(以下,BC セ メント)を用いたコンクリート(以下,BC コンクリー ト)について研究を進めている。BC セメントは、高炉 スラグ微粉末の大量使用にてクリンカ使用量を結合材全 体の30%程度に抑制し、さらにSO3量を高めることで初 期強度と収縮特性の改善を目指した材料である³⁾。発熱 量が小さいBC セメントの特徴から,BC コンクリートは 温度ひび割れ抑制に優れることが期待できる。しかしマ スコンクリート部材に用いたときの温度、ひずみ、応力 の発現性状については必ずしも明らかとなっていない点 が多い。

これらを受け、本研究では、BC コンクリートを建築 用のマスコンクリート部材に適用することを想定し、温 度ひび割れ抵抗性について明らかにする。本検討にあた り、実機製造した BC コンクリートを対象に、マスコン クリート部材の発熱特性、温度履歴、温度応力の発現に ついて実験と解析により検討し,その優れた温度ひび割 れ抵抗性を定量的に示すことを目指す。

2. 実験計画

2.1 実験要因と水準

表-1 に実験要因と水準を,また表-2 はその組み合 せを示す。第一の実験要因である施工時期として,夏期, 標準期,冬期の3季節,第二の要因の呼び強度は27~40 の3水準,第三のセメント種類として BC に加え高炉セ メントB種(以下BB),中庸熱ポルトランドセメント(M) の3種類を設定する。表-2 にあるように全体で7種類 のコンクリートを対象とし,夏期施工ではBC に加え BB とMについて検討する。標準期施工では呼び強度の違い

表-1 実験要因と水準

実験要因							
施工時期	呼び強度	セメント種類					
3水準(夏期,標準期,冬期)	3水準(27, 33, 40)	3水準(BC, BB, M)					

表-2 実験要因の水準組合せ

	5	実験要	大					実	験項E	3	
記号	施工 時期	呼び 強度	セメン ト種類	W/B (%)	粗骨材 種類	工場	打設日	フレッ シュ・	断温 上 試験	模擬 部材 実験	
S-E33			BC	42	石灰石		0/22		0		
S-BB33	夏期	33	BB	43.5	砕石	工場	0/22				
S-M33			M 4	46.5	砂岩砕 石	4	7/6				
F-E40	40 標準 33		40		38		_ 18		0	_	0
F-E33		33		45	石灰石	工場 石灰石 B	工場 B 11/11				
F-E27		27	BC	55	砕石	D	J				
W-E33	冬期	33		42		工場 A	1/18				

*1 鹿島建設(株)技術研究所 建築生産 Gr. グループ長 Ph.D (正会員)
*2 鹿島建設(株)技術研究所 建築生産 Gr. 主任研究員 修士(工学)
*3 鹿島建設(株)技術研究所 建築生産 Gr. 研 究 員 修士(工学) (正会員)
*4 (株)竹中工務店 技術研究所 建設材料部 主任研究員 修士(工学) (正会員)

図-1 柱模擬部材実験の概要

による影響把握,また冬期施工はBCの呼び強度33のみ とし,他季節と比較して施工時期の違いが及ぼす影響に ついて明らかとする。コンクリートは全て実機製造で, 東京都区内のA,Bの2工場から出荷する。

2.2 材料および調合

使用する材料を表-3 に,また調合一覧を表-4 にま とめる。使用セメントの物性は表-5 のとおりである。 BC セメントは, JIS R 5211 に定める高炉セメント C 種の 規格を満足する。表-4 の調合は,スランプ 18cm,空気 量 4.5%の仕様で各呼び強度を満足するよう出荷工場で の試し練りで定めてある。ただし,BB および M は出荷 工場の標準配合である。

2.3 実験項目

実験項目は, 表-2にあるフレッシュ・圧縮強度試験, 断熱温度上昇試験, 柱模擬部材実験である。フレッシュ 試験は出荷時に実施し, 圧縮強度は材齢28日の標準養生 強度で代表する。標準養生供試体は出荷時に採取する。

断熱温度上昇試験は、打込み温度 20℃を目標として BC コンクリートのみで実施し、S-E33 と同一の材料・調 合を対象として、T 社製の断熱熱量計を用い文献4)に準 拠して計測を行う。この試験は 20℃環境の試験室で練り 混ぜた試料を用いて実施し、模擬部材(S-E33)との打込み 温度が異なることによる影響は後述のように別途補正す る。BB と M の断熱温度上昇については文献5)(以下, AIJ マスコン指針)に示される断熱温度上昇量算定式

(AIJ式)により求め、比較検討するものとする。

柱模擬部材実験では、すべてのコンクリート調合を対象に図-1および写真-1の柱模擬部材(1m角)をそれ ぞれ1体づつ製作し、温度とひずみを計測する。模擬試験体の内部には、無応力容器に収めたひずみ変換器(ひず

写真-1 実験で用いた柱模擬部材の例

表-3 コンクリート材料

項目	記号	種類	物性値	備考						
セメント	С	BC(高炉セメントC種適合, 高炉ス ラグ微粉末4000ブレーン)	密度 2.98g/cm ³	-						
		高炉セメントB種	密度 3.04g/cm ³	-						
		中庸熱ポルトランド	密度 3.21g/cm ³	-						
細骨材1 ^{※1}	S1	山砂(千葉県産)	表乾密度 2.58g/cm ³	A工場で使用						
	S2	石灰石砕砂(栃木県産)	表乾密度 2.65g/cm ³							
細骨材2 ^{※2}	S1'	山砂(千葉県産)	表乾密度 2.61g/cm ³	B工場で使用						
	S2'	砂岩砕砂(栃木県産)	表乾密度 2.63g/cm ³							
粗骨材	G	石灰石砕石2005(埼玉県産)	表乾密度 2.70g/cm ³	A工場BC用						
	G'	砂岩砕石2005(栃木県産)	表乾密度 2.66g/cm ³	Mに使用						
	G"	石灰石砕石2005(北海道産)	表乾密度 2.70g/cm ³	B工場で使用						
混和剤	Ad	BCセメント用 高機能AE減水剤 標準型(試作品1)	密度 1.08g/cm ³	標準期・冬期 に使用						
		BCセメント用 高機能AE減水剤 遅 延型(試作品2)	密度 1.09g/cm ³	夏期BCに使用						
	AE減水剤 遅延型I種 密度 1.09g/cm ³ BB, MIC使用									
*1 質量	*1 質量比でS1:S2=5:5の混合使用,混合密度2.62g/cm ³									

*2 質量比でS1':S2'=3:1の混合使用,混合密度2.62g/cm3

表-4 調合

	W/C	s/a		Ĕ	単位量(kg/m³)			混和剤	
記号	(%)	(%)	7k	セン	小 ^{*1}	細骨	細骨	粗骨	(対セメン	
			~1	クリンカ	BFS	材1	材2	材	ト質重比)	
S-E33	42	44.0	178	136	288	366	366	962	0.90	
S-BB33	43.5	42.6	186	248	180	281	421	974	0.80	
S-M33	46.5	45.4	176	379	١	394	394	960	1.20	
F-E40	38	39.2	185	156	331	467	155	996	0.65	
F-E33	45	43.1	175	124	265	548	184	996	0.70	
F-E27	55	46.4	166	97	205	626	208	996	0.75	
W-E33	42	44.8	177	135	287	374	374	948	1.00	

*1 BB, BCの場合は, クリンカー起源分と高炉スラグ分(BFS)とに分けて表言

み計)および温度計を柱模擬部材中に埋設し,打込み直後 から測定を行う。

3. 実験結果

3.1 フレッシュ試験および圧縮強度試験の結果

コンクリートのフレッシュ結果および圧縮試験結果 について表-6,図-2にそれぞれ示す。フレッシュ性状 はスランプ 18±2.5cm,空気量 5±1.5%の目標範囲内と なった。空気量については打込みまでのロス 0.5%を見込 んだ値である。図-2のBC コンクリートの標準期の強 度は,通常のコンクリートと同様に C/W と線形関係にあ

標準養生強度に及ぼす C/W の影響 図-3 断熱温度上昇試験の結果 図-2

図-4 柱模擬部材の温度履歴

8

10 12 14

り, BCの夏期および Mとほぼ同等の強度発現となった。 冬期施工の BC と BB の強度はこれより高い結果となっ た。これらから、BC は打込み時期の外気温により標準 養生強度が変動する可能性が示唆された。

3.2 断熱温度上昇試験の結果

S-E33 にて実施した断熱温度上昇試験の結果を図-3 に示す。図中には, AIJ 式による S-BB33, S-M33 の算定 結果も併せて示している。BC の断熱温度上昇量の終局 値は, BB に比べ 15℃程度低く, M と同等である。

3.3 模擬部材実験の結果

模擬部材実験の結果を表-7 にまとめて示す。 柱模擬 部材の中心位置におけるコンクリート温度の経時変化を 図-4に、各柱模擬部材の温度特性値の比較を図-5に示 す。図-5の夏期のデータを比較すると、BC(S-E33)は、 BB(S-BB33)よりも最高温度,温度上昇量とも10℃以上低 く, M(S-M33)とは温度履歴がほとんど重なっている。こ の傾向は,図-3に示した断熱温度上昇と一致している。

図-6は、各柱模擬部材で計測されたひずみ挙動をま とめたものである。計測されたひずみ挙動は、図-4の 温度変化に伴う温度ひずみと自己収縮ひずみの成分にて 主として構成され、各部材で大きく異なっている。図-7 は、ひずみ挙動を表す特性値として、最大膨張ひずみ、 収縮ひずみ幅、最小ひずみについて各部材の結果を比較 したものである。最大膨張ひずみは、最高温度に対応し て膨張ひずみが最大となった点で定義した。最小ひずみ は、最高温度からコンクリート温度が降下して最低とな

品質 密度(g/cm ³)			高炉スラ	グ高含有(BC)	高炉	B種(BB)	中庸熱(M)		
			試験成績	規格値(JIS R 5211 C種)	試験成績	規格値(JIS R 5211 B種)	試験成績	規格値(JIS R 5211 B種)	
			2.98	-	3.04	-	3.21	-	
	比表面積	(cm²/g)	4170	≧3300	3800	≧3000	3170	≧2500	
凝結(h-min)		始発3-55 終結6-10	始発60min以上 終結10h以下	始発3-03 終結4-21	始発60min以上 終結10h以下	始発2−16 終結3−24	始発60min以上 終結10h以下		
	安定性(パット法)		良	良	良	良	良	良	
E (王縮強さ N/mm ²)	材齢3日 材齢7日 材齢28日	18.2 31.5 52.0	≧7.5 ≧15.0 ≧40.0	21.6 37.1 64.6	≧10.0 ≧17.5 ≧42.5	21.5 30.8 56.1	≧7.5 ≧15.0 ≧32.5	
水和熱(J/g)		材齢7日 材齢28日	_	-	-	-	272 322	≦290 ≦340	
化	酸化マグネシウム(%)		5.0	≦ 6.0	3.4	≦ 6.0	0.86	≦ 5.0	
学	三酸化硫黄(%)		3.6	≦ 4.5	2.2	≦ 4.0	2.25	≦3.0	
成	: 強熱減量(%)		0.3	≦ 5.0	1.3	≦ 5.0	0.66	-	
分	塩化物イオン(%)		0.006	-	0.011	-	0.014	≦0.02	
鉱物	はい酸三カルシウム		-	-	-	-	0.011	≦50	
組 成	(70) アルミン酸三カルシウ ム(%)		-	-	-	-	0.011	≦8	

表-5 セメントの品質

表-6 フレッシュ試験および強度試験の結果

		フレッシ	₽.		堙淮 羗		
試験体	スラン プ (cm)	空気 量 (%)	コンク リート温 度 (°C)	単位容 積 質量 (kg/L)	ブリーディ ング量 (cm ³ /cm ²)	体中设 生28日 材齢強 度	
S-E33	16.5	4.0	32	2.33	-	46.4	
S-BB33	16.5	4.3	32	2.31	-	53.2	
S-M33	19.5	6.1	32	2.26	0.05	43.6	
F-E40	18.5	5.3	20	2.27	0.16	52.8	
F-E33	20.5	4.9	19	2.28	0.20	46.0	
F-E27	19.5	4.8	19	2.29	0.18	39.2	
W-E33	19.5	4.6	9	2.32	-	52.7	

図-5 柱模擬部材の温度比較

表-7 柱模擬部材実験の結果概要

		温度	計測	ひずみ計測		見掛け	
試験体	平均外 気温 (℃)	最度 (℃)	最高温 度到達 時間 (hr.)	温度上 昇量 (℃)	最大膨 張ひず み(µ)	収縮ひ ずみ (µ)	の線膨 張係数 (µ/℃)
S-E33	29.0	67.9	20.0	35.9	357	258	6.5
S-BB33	29.0	79.4	22.0	47.4	311	345	8.2
S-M33	28.3	67.6	20.1	35.6	386	363	9.2
F-E40	12.3	50.1	37.2	30.1	387	321	6.4
F-E33	12.3	42.9	33.6	23.9	353	276	7.3
F-E27	12.3	37.2	34.5	18.2	322	234	7.7
W-E33	6.0	32.3	54.7	23.3	362	190	5.9

図-8 見かけの線膨張係数の同定結果例

った点のひずみである。収縮ひずみ幅は,最小ひずみと 最大膨張ひずみの差で表した。収縮ひずみ幅に相当する 変形が外部拘束されることで温度応力が発生することか ら,この値が小さいほど温度応力の発現が小さいと考え られ,BC コンクリートは,収縮ひずみ幅が BB,Mより 全体に小さく,温度応力が低く温度ひび割れ抵抗性に優 れる傾向が予想される。

4. 考察

4.1 見掛けの線膨張係数

3.3 節に述べた模擬部材実験の温度とひずみの計測結 果から,温度応力の発現に大きな影響を与える温度降下 時の線膨張係数を同定した。前述のように,計測した図-6 のひずみは,温度ひずみに加え自己収縮ひずみを含む ので,ここで得られるのは,厳密な意味での線膨張係数 αでなく,次式に示す自己収縮の影響を含む見かけの線 膨張係数 α である。

 $\Delta \varepsilon_{d} = \Delta \varepsilon_{temp} + \Delta \varepsilon_{as} \approx \Delta T \times \alpha + \Delta \varepsilon_{as} \approx \alpha' \times \Delta T \quad (1)$

ここに、 $\Delta \epsilon_{d}$ は収縮ひずみの変化量、 $\Delta \epsilon_{temp}$ は温度ひずみの変化量、 $\Delta \epsilon_{as}$ は自己収縮ひずみの変化量、 ΔT は温度変

図-9 見掛けの線膨張係数の比較

化量(℃)である。α'は、一定の温度下降に伴う収縮変形 を支配し、温度応力の発現に大きな影響を与える。α'が 小さいコンクリートほど温度ひび割れ抵抗性が高くなる。 同定に際しては、温度とひずみの関係に線形性が強まる 最高温度に達してから 24 時間後以降の温度降下域で回 帰した。

図-8にα'の同定結果例,また図-9には得られた結果 をまとめて示す。これらから BB に比べ BC コンクリー トのα'は小さい傾向にあることがわかる。BB と BC に用 いた粗骨材は異なるが同じ石灰岩であり、この相違によ る影響は支配的でないと考えた。高炉セメントコンクリ ートの線膨張係数はポルトランドセメントコンクリート に比べ大きいことが報告されており⁶),高炉スラグの混 和率が大きくなるほどこの傾向が顕著になることも予想 されたが,ここでは反対の結果となった。これは,自己 収縮が一般に大きいとされる BB に比べ⁷), BC コンクリ ートでは小さいことが一因と考えられる。これを示唆す る現象として,図-5 で BB に比べ BC コンクリートの最 高温度が低いにも関わらず図-7 の最大膨張ひずみは大 きい傾向を示していることが挙げられる。

4.2 温度解析

コンクリートの断熱温度上昇曲線より柱模擬部材の 温度履歴の解析を行った。解析は、3次元有限要素法に よるマスコンクリート温度応力計算用の市販プログラム を用い、対象は呼び強度33のBC,BB,Mとした。解 析条件は、表-8に示すように、主としてAIJマスコン 指針に従って設定した。断熱温度上昇曲線は、F-E33に ついては図-3の試験値,BBとMはAIJ式を用いた。 S-E33とW-E33については、図-3の実験値をAIJ式(表 -8)でKと α について回帰した後、打込み温度の影響に ついてAIJ式マスコン指針のBB用温度補正値q(夏期 1.409,冬期0.565)を α に乗じて修正したものを使用した。

図-10は断熱温度上昇曲線の回帰と補正の結果である。 BC 試験値を AIJ 回帰式は必ずしも精度よく再現してお らず, BC の断熱温度上昇曲線のモデル化が今後の課題 である。 図-11 は温度解析の結果である。断熱温度上昇の試験 データを用いた F-E33 では実験と解析はよい一致を示し

	衣-	一遍及胜机の未件					
	項目	入力値	備考				
外気温		実測値	-				
初期温度		実測値	-				
	S-BB33 S-M33	AIJ式 Q=K(1-e-at)	AIJマスコン指 針参照				
断熱温 度上昇	F-E33	断熱温度上昇試験値	_				
式	S-E33 W-E33	断熱温度上昇試験値を AIJ式で回帰,さらにα を補正	AIJマスコン指 針参照				
教会教	比熱 (kJ/kg℃)	1.15					
熱止纵	熱伝導率 (W/m℃)	2.6					
密度	(kg/m^3)	2400	AIJマスコン指				
熱伝達	上面 (W/m ² h℃)	12.5	町 11 11 11 11 11 11 11 11 11 11 11 11 11				
率	側面(合板) (W/m ² h℃)	7					

表-8 温度解析の条件

図-10 断熱温度上昇データの補正 (BC)

ているが, S-E33 および W-E33 では傾向が異なっている。 また,図-12 は実験値と解析値に及ぼす平均外気温(柱 模擬部材の打込み後14日間)の影響を表しており,実験 値と解析値の差の絶対値は平均外気温によって異なり, 高温となる夏期にはBCとMで大きくなっている。

以上の結果によれば,BC コンクリートの柱模擬部材 の温度解析は,断熱温度上昇試験のデータを直接用いた 標準期の場合には精度よく温度履歴を再現しているが, 夏期と冬期では温度上昇勾配や最高温度が再現できてい ない。これらの原因のひとつとして,図-10に示した断 熱温度上昇曲線のモデル化が不十分であることが考えら れる。すなわち,標準期の断熱温度上昇曲線の立ち上が りの勾配が回帰式と差が大きく,この回帰式を元に打ち 込み温度の影響を補正して実施した冬期と夏期の解析結 果は,実験との乖離が大きくなった可能性が考えられる。

5. まとめ

本研究では,高炉スラグ高含有セメント(BC)によるマ スコンクリートの温度ひび割れ抵抗性について実験的に 検討し,次の結論を得た。

- (1) BC コンクリートを用いたマスコンクリート部材の水和発熱による最高温度、温度上昇量は、高炉 B種セメント(BB)コンクリートより10℃以上低く、 中庸熱セメント(M)コンクリートと同等であった。
- (2) BC コンクリートによるマスコンクリート部材では、前記水和発熱が小さいことに加え、温度下降による収縮ひずみ幅が小さいため、温度ひび割れ抵抗性に優れることが予想される。
- (3) 見かけの線膨張係数は,温度応力の発現に大きな 影響を与え,この値が小さいほど温度ひび割れ抵 抗性が高くなる傾向となるが,BC コンクリート では BB と比較して顕著に小さくなった。
- (4) BC コンクリートによるマスコンクリート部材の 温度履歴に対する FEM 解析において、同条件で 実施した断熱温度上昇の試験データを用いた標 準期の場合には実験値とよく一致したが、夏期と 冬期の条件では、打込み温度が異なる影響を AIJ マスコン指針に基づく補正だけでは精度よく反 映できず、解析の精度に課題が残った。
- 謝辞 本研究は新エネルギー・産業技術総合開発機構 (NEDO)の助成による「省エネルギー革新技術開発事

業/実用化開発/エネルギー・CO2 ミニマム (BC) セメン ト・コンクリートシステムの研究開発」の一環として実 施した。共同研究者である東京工業大学 坂井悦郎教授を はじめ,(株)デイ・シイ,日鉄住金高炉セメント(株), 太平洋セメント(株),日鉄住金セメント(株)および竹 本油脂(株)の関係各位に紙面を借りてお礼申し上げる。 また,実験に際し,ご協力を賜ったアサノコンクリート (株),上陽レミコン(株)の関係各位に謝意を表する。

参考文献

- コンクリート工学協会:環境時代におけるコンクリ ートイノベーション-コンクリート構造物の環境 性能に関する研究委員会報告書,2008.8
- コンクリート工学協会:混和材料から見た収縮ひび 割れ低減と耐久性改善研究委員会報告,2010.9
- 米澤敏男ほか:エネルギー・CO2 ミニマム (ECM) セメント・コンクリートシステム,コンクリート工 学, Vol. 48, No. 9, pp.69-73, 2010.6
- 日本コンクリート工学協会:品質評価試験方法研究 委員会報告書, pp.62-73, 1998.12
- 5) 日本建築学会:マスコンクリートの温度ひび割れ制 御設計・施工指針(案)・同解説,2008.2
- 6) 細田暁ほか:高炉スラグ微粉末を用いたコンクリートの力学特性に対する微視的温度応力の影響,土木学会論文集 E, Vol.63, No.4, pp.549-561, 2007.10
- 7) 久保征則ほか:高炉セメントを用いたコンクリートの自己収縮に関する実験的研究,コンクリート工学年次論文集, Vol. 19, No. 1, pp.763-768, 1997.6