論文 樹脂モルタル補修材によるコンクリート構造物の耐久性向上に関す る研究

内田 真未*1·西出 靖*2·野嶋 潤一郎*3·溝渕 利明*4

要旨:近年,構造物の劣化が顕在化してきており,既設・新設ともにコンクリート構造物の耐久性を向上さ せるニーズが高まっている。本研究では,エポキシ樹脂と特殊骨材を混合した高弾性高強度樹脂モルタル補 修材を用い,コンクリート構造物の耐久性,収縮特性に対する向上効果について検討した。その結果,被覆 材料のち密な構造性および母材コンクリートとの一体性によって,温度変化に伴う追従性が高く,耐凍害性, 遮塩性,耐酸性,収縮低減に対する効果が確認された。

キーワード:表面被覆材料、樹脂モルタル、耐久性、凍害、塩害、乾燥収縮、化学的浸食

1. はじめに

高度経済成長期に大量に建設された我が国の社会イ ンフラは、老朽化が進んでおり、劣化が顕在化してきて いる。既設構造物の補修・補強による維持管理を強化し、 供用年限を伸延させることが必要不可欠となっている。 一方、新設構造物においても、ライフサイクルコストの 低減を図るため、当初から高耐久性が要求されている。

そこで、既設・新設ともにコンクリート構造物の耐久 性を向上させる手段として、コンクリート表面に被覆材 料による表面保護を行い、外的劣化要因の侵入を防止・ 抑制する手法(表面被覆工法)がある。表面被覆工法によ るコンクリート構造物の劣化抑制効果は、表面の被覆が 外来の二酸化炭素、酸素、塩化物イオン、水分、酸性物 質、その他の劣化因子の侵入を防止または抑制する効果 によってもたらされる。しかしながら、母材コンクリー トの温度変化に伴う変位に追従できずに表面被覆材に割 れや剥れが生じてしまう場合がある。このため、表面被 覆工法による劣化抑制効果は、被覆材料自身の品質以外 にもコンクリートとの一体性などによって実性能が左右 されることになる。

本研究では、従来から断面修復材料として利用されて いるエポキシ樹脂に特殊骨材を混合した高弾性高強度樹 脂モルタルを用い、耐凍害性、遮塩性、耐酸性、収縮特 性に対する効果について検討した。

2. 実験概要

本研究では、樹脂モルタルを表面被覆材料として用い、 凍害と塩害による複合劣化、耐酸性、乾燥収縮に対する 抑制効果について検討を行った。本研究で実施した試験 項目および準拠した規格を表-1に示す。

2.1 表面被覆材の概要

本研究で使用した表面被覆材は、エポキシ樹脂と特殊骨 材を混合した高弾性高強度樹脂モルタルである。表-2に 諸物性を示す。なお、骨材は、二酸化ケイ素(SiO₂)75%、 硫酸バリウム (BaSO₄)25%の比率で混合している。

表-1 本研究の試験項目

試験項目	規格		
凍害・塩害の	凍結融解試験(JIS A 1148)に準拠し,		
複合尘化	保耐小で塩小(NaUl涙皮3%)とした		
	塩化物イオン量測定(JIS A 1154)		
耐酸性	耐酸性試験(JSWA 断面修復材規格)		
乾燥収縮	被覆材料供試体	長さ変化測定(JIS A 1129-3)	
	コンクリート供試体	長さ変化測定(JIS A 1129-2)	

表-2 使用した被覆材の諸物性

性状	主剤	硬化剤	骨材	試験方法
配合比(重量比)	主剤/硬化剤/骨材=100/20/600			-
粘度(20°C)	15000 mPa•s	40 mPa•s	_	IIS K 6833
	5000 mPa•s		JI2 K 0022	
比重(20℃)	1.19	1.06	-	JIS K 6833
硬化物比重	2.27			JIS K 7112
圧縮強度	113.5 N/mm ²		JIS K 7208	
圧縮弾性係数	$1.43 \times 10^4 \text{ N/mm}^2$		JIS K 7208	
引張強度	21.1 N/mm ²		JIS K 7113	
せん断接着強度	18.5 N/mm ²		JIS K 6850	
硬化収縮率	0.01%		JIS K 416-2004	
熱膨張係数	1.86 × 10 ⁻⁵ /°C		JIS K 416-2004	

*1 法政大学大学院デザイン工学研究科都市環境デザイン工学専攻 修士課程 (学生会員)

*2 日米レジン株式会社 (正会員)

*3 法政大学大学院デザイン工学研究科都市環境デザイン工学専攻 博士課程 (正会員)

*4 法政大学デザイン工学部都市環境デザイン工学科教授 博士(工学) (正会員)

2.2 凍害および塩害の複合劣化に対する検討

本検討では,被覆厚さの違いが塩化物イオンの侵入と 凍結融解作用の複合要因による劣化に対する抑制効果に ついて検討を行った。

(1) 供試体概要

母材コンクリートは普通ポルトランドセメントを用い, 水セメント比 60%の配合とした。本検討では,供試体全 面を被覆し,被覆厚さによる影響について検討を行った。 なお,凍結融解試験中に容器と供試体間が所定の厚さと なるようにするため,被覆後の仕上げ寸法がすべて同一 となるように母体コンクリートの寸法を調節した。表-3 に供試体概要を示す。

(2) 試験方法

本試験では、凍結融解試験法(JIS A 1148)に準拠し、凍 結水を塩水(NaCl 濃度 3%)に置き換え、300 サイクルまで 試験を実施した。30 サイクル終了毎に各供試体の動弾性 係数および質量測定、写真撮影による外観観察を行った。 また、150 および 300 サイクル終了後に JIS A 1154 に準 拠し、塩化物イオン量測定を行った。試料は、図-1 に示 すように供試体長さの中央から 30mm 区間において、表 面から 10mm 毎に採取し、各層に含まれる塩化物イオン 量を測定した。その際に、2 方向からの塩分浸透量を確 認するため、測定対象外の2方向における表面から 10mm 層は除去した。

3 耐酸性に対する検討

本検討では,表面被覆の有無による,耐酸性に対する 抑制効果について検討を行った。

(1) 供試体概要

母材コンクリートは普通ポルトランドセメントを用い, 水セメント比 55%の配合とした。本検討では,供試体全 面に 10mm 厚さで被覆した。表-4 に供試体概要を示す。

(2) 試験方法

本試験は、下水道コンクリート構造物の腐食抑制技術 及び防食技術マニュアル¹⁾における断面修復用モルタル に関する品質試験方法に準拠して行った。供試体を 5% 硫酸水溶液に浸漬し、質量測定および写真撮影による外 観観察を行った。なお、浸漬後 28 日間は 7 日毎に試験液 全量取り替え、以降は 14 日毎に取り換えおよび測定を 行った。浸漬の様子を**写真-1**に示す。

2.4 乾燥収縮に対する検討

本検討では,被覆材料で作製した供試体により被覆材 料自体の収縮特性について実験を行った。次に,コンク リートに表面被覆した場合における表面被覆の有無およ び被覆厚さによる乾燥収縮に対する低減効果について検 討を行った。

表-3 供試体概要(凍害・塩害の複合劣化)

被覆厚さ(mm)	母材コンクリート寸法(mm)	仕上げ寸法(mm)
0	100 × 100 × 400	
3	94 × 94 × 394	100 × 100 × 400
6	88 × 88 × 388	100 × 100 × 400
10	80 × 80 × 380	

図-1 塩化物イオン量測定対象の概要

表-4 供試体概要(耐酸性)

塗装厚さ(mm)	母材コンクリート寸法(mm)	仕上げ寸法(mm)
0	100 × 100 × 200	
10	100 × 100 × 200	120×120×240

写真-1 浸漬の様子(浸漬後112日経過)

写真-2 供試体概要(乾燥収縮-被覆材料供試体)

(1) 供試体概要

被覆材料供試体による検討では、40×40×160mmの鋼製 型枠にあらかじめ両端面中央にゲージプラグを設置し、 モルタルもしくは表面被覆材料を流し込み、供試体を作 製した。モルタルは普通ポルトランドセメントを用い、 水:セメント:砂=0.5:1:2の配合とした。また、供試 体は打込み後7日間の水中養生を行った後、試験を開始 した。**写真-2**に供試体概要を示す。

コンクリート被覆による検討では、母材コンクリート は普通ポルトランドセメントを用い、水セメント比 60% の配合とした。本検討では、供試体全面を被覆し、被覆 厚さによる影響について検討した。また、供試体は同一 条件とするため、被覆の有無にかかわらず被覆後7日間 の水中養生、1日間の気乾養生を行い、貼付け型のゲー ジプラグを供試体の中心線上で基長 200mm となるよう に接着剤を用いて貼付けした。表-5 および写真-3 に供 試体概要を示す。

(2) 試験方法

被覆材料供試体による検討では,長さ変化測定(JIS A 1129-2)に準拠し,コンタクトゲージ法による測定を行った。

コンクリートによる検討では、長さ変化測定(JIS A 1129-2)に準拠しダイヤルゲージ法による測定を行った。 温度 20℃,相対湿度 60%の恒温恒湿室で養生し、水中養 生直後を測定材齢1日目とし、7日毎に長さ変化および 質量測定を行った。

3. 試験結果および考察

3.1 凍害および塩害の複合劣化に対する検討

(1) 質量変化

本試験における各供試体の質量変化を図-2に示す。表面被覆を施した供試体に質量変化は見られなかった。また,被覆厚さ3mmの供試体においても変動はなく,被覆厚さによる差異は確認できなかった。

表-5 供試体概要(乾燥収縮-コンクリート)

被覆厚さ(mm)	母材コンクリート寸法(mm)	仕上げ寸法(mm)
0	100 × 100 × 400	
3	100 × 100 × 400	106×106×406
6	100 × 100 × 400	112×112×412
10	100 × 100 × 400	120×120×420

写真-3 供試体概要(乾燥収縮-コンクリート)

被覆厚さ	試験前	150サイクル後	300サイクル後
0mm			
3mm	R	2 R	R

表-6 外観変化(凍害および塩害の複合劣化)

(2) 外観変化

表-6は、本試験における被覆厚さ0mmおよび3mm供 試体の外観変化を示す。被覆厚さ0mmの供試体では、ス ケーリングによる変状が確認されたが、表面被覆を施し た供試体は被覆厚さに関わらず、変状は見られなかった。 また、写真-4に300サイクル終了後の供試体断面を示す。 接着面に浮き等は見られなかった。

表-7 および写真-5 は、参考として被覆厚さ 10mm で 供試体の上面と端面の片方に被覆を施し、凍結融解試験 を行った供試体の外観変化である。母材コンクリートの スケーリングが進行し、セメントペーストや骨材が剥離 したにもかかわらず、被覆材料の剥れや浮きは見られず、 被覆材料の耐凍害性および母材コンクリートとの付着性 の高さを確認できた。

(3) 相対動弾性係数

図-3 に各供試体の相対動弾性係数を示す。表面被覆の 有無に関係なく,相対動弾性係数が 80%以上となり,凍 結融解に対する抵抗性に大きな差異は確認できなかった。 この原因として,既往の研究^{2)~4)}より,塩化物イオン の存在により,水が凍結する空隙径が小さくなること, また浸透圧の増加が起こったためではないかと考えられ る。

(4) 塩化物イオン量測定

図-4に300サイクル終了後の塩化物イオン量分布を示 す。全体的に、塩化物イオンの浸透量は少ないものの、 表面被覆を施すことで表層 0~1cm において塩化物イオ ン量の浸透量を 1/3 以上抑制していることが確認できた。

以上の結果より,本研究で使用した表面被覆材により, 相対動弾性係数に有効な差異はみられなかったものの, 外観や塩化物イオン浸透に対し,凍害および塩害の複合 劣化に対する抑制効果が確認された。これは,**写真-4**に 示すように,被覆材料のち密な構造および母材コンクリ ートとの付着(強度)の強さにより,劣化促進環境下にお いても外部からの水や塩化物イオンの侵入を抑制できた ためと考えられる。

写真-4 300 サイクル終了後断面(被覆厚さ 10mm)

表-7 半面被覆供試体の外観変化

被覆厚さ	試験前	300サイクル後
10mm		

図-4 300 サイクル終了後の塩化物イオン量分布

表-7 外観変化(耐酸性)

3.2 耐酸性に対する検討

(1) 質量変化率

図-5 に各供試体の質量変化率を示す。被覆厚さ 0mm の供試体は浸漬日数の経過に伴い,質量低下が大きくな る傾向を確認した。一方,被覆厚さ 10mm の供試体にお いて,質量の低下は見られなかった。また,今回適用し た規格では補修材料の品質として 28 日間浸漬時の質量 変化率が 90%以内であるとなっており,この規格の条件 を十分満足する結果となった。

(2) 外観変化

表-7 に各供試体の外観変化を示す。被覆厚さ 0mm の 供試体は,浸漬日数が経過するにつれ,表面からセメン トペースト分がなくなって骨材が露出し,一部剥離して いる箇所も確認できた。一方,被覆厚さ 10mm の供試 体は特に変状は見られなかった。

以上の結果より,本研究で使用した表面被覆材により, 耐酸性に対する効果があることを確認した。

3.3 乾燥収縮に対する検討

(1) 被覆材料供試体による検討

各供試体の質量変化率を図-6に示す。モルタル供試体 は、材齢の経過とともに質量の低下が大きくなるのに対 して、被覆材料供試体は質量の低下がほとんどみられな かった。

図-7 に各供試体の長さ変化率を示す。モルタル供試体 は、材齢の経過とともに長さ変化の割合率大きくなるの に対して被覆材料供試体は特に大きな変化がみられなか った。

(2) コンクリート供試体による検討

各供試体の質量変化率を図-8 に示す。被覆厚さ 0mm の供試体は、材齢の経過とともに質量の低下が大きくな り、表面被覆を施した供試体は、被覆厚さに関わらず質 量の低下はほとんどみられなかった。

図-9 に各供試体の長さ変化率を示す。被覆厚さ 0mm の供試体は、質量変化と同様に材齢の経過とともに長さ 変化率が小さくなる結果となった。一方、表面被覆を施

図-6 各供試体の平均質量変化率(被覆材料供試体)

図-7 各供試体の平均長さ変化率(被覆材料供試体)

した供試体は長さ変化率 0~±50×10⁶ 程度であり、長 さ変化率に特に大きな変化はみられなかった。

以上の結果より、本研究で使用した表面被覆材料自体 の収縮性が極めて小さいことが確認された。また、コン クリート供試体に表面被覆材として使用した場合におい て、母材コンクリートの乾燥収縮を低減させる効果があ ると思われる。これは、表面被覆材料のち密さにより、 母材コンクリート内部からの水分逸散を抑制することが できたためと考えられる。また、母材コンクリートと表 面被覆材が一体化しており、被覆材料にひび割れ等の変 状は現状においてみられなかった。

また、樹脂モルタルを表面被覆材料として用い、凍害 と塩害による複合劣化、耐酸性、乾燥収縮に対する抑制 効果をレーダーチャートとして図-10に示す。

4. まとめ

本検討での条件のもとで得られた結果を以下に示す。

(1) 凍害および塩害の複合劣化に対しては,相対動弾 性係数に有効な差異はみられなかったものの,外観や塩 化物イオン浸透に対し,抑制効果を確認した。なお,表 面被覆を施した場合,表層 0~1cm において塩化物イオン 量の浸透量を 65%程度抑制していることが確認された。

(2) 耐酸性に対しては、表面被覆を施した供試体は、 外観変状および質量の低下が現状で見られず、耐酸性に 対する抑制効果が高いといえる。

(3) 乾燥収縮に対しては,表面被覆を施した供試体 は

質量変化および長さ変化に特に大きな変化が現状で見ら れず、乾燥収縮に対して抑制効果があるといえる。

本研究で使用した表面被覆材料は,熱膨張係数がコ ンクリートの2倍ほどであるにもかかわらず,母材コン クリートとの一体性が高く,ち密な構造であることか ら,被覆材による遮へい効果が保たれ,上記に挙げた各 種劣化要因に対する抑制効果があったと思われる。本研 究では,被覆厚さ3mmにおいても有意な結果となった が,実構造物においては,塗残し等による施工不良を考 慮し,被覆厚さ5mm程度が有効であると考えられる。

参考文献

1) 下水道コンクリート構造物の腐食抑制技術及び防食 技術マニュアル 平成24年4月

2) 佐伯昇,藤田嘉夫:寒冷地における海岸環境下のコン クリート,コンクリート工学, Vol.25, No.4, 1987

図-8 各供試体の平均質量変化率(コンクリート)

図-9 各供試体の平均長さ変化量(コンクリート)

図-10 各劣化の抑制効果の総合評価

3) 月永洋一, 庄谷征美, 笠井芳夫: 凍結防止剤によるコンクリートのスケーリング性状とその評価に関する基礎的研究, コンクリート工学論文集 第8号, 第1巻, 1997
4) 月永洋一, 庄谷征美, 原忠勝: 凍結防止剤の影響を受けるコンクリートの凍害劣化に関する基礎的研究, JCI 融雪剤によるコンクリート構造物の劣化研究委員会論文集, 1999