論文 曲面状分割鋼板を用いた壁式橋脚耐震補強工法

武田 篤史*1·田中 浩一*1·中田 裕喜*2·鬼頭 直希*3

要旨:基部拘束が困難な壁式橋脚の耐震補強に関して,効率の良い拘束を与えるとともに優れた施工性を有 する方法として,曲面状分割鋼板による補強工法を考案した。本論文では,曲げ補強を行った試験体および せん断補強を行った試験体それぞれに対して,正負交番載荷実験を行った結果を示した。実験の結果から, 本工法の成立性,良好な変形性能,およびせん断耐力の算定法について明らかとすることができた。 キーワード:耐震補強,壁式橋脚,曲げ補強,せん断補強,フープテンション,水平載荷実験

1. はじめに

既設RC壁式橋脚の耐震補強は, 偏平な断面を持つ事か ら, 鋼板やRCによる巻立てと断面貫通型の鋼材(中間貫 通材)の併用によって行われるのが一般的である。しか し, 中間貫通材のための削孔は, 施工費用を増大させる とともに, 既設の鉄筋を傷つける可能性があり, できる 限り低減することが求められている。

一方,楕円形鋼板で巻立てて削孔を無くす方法も提案 されている^{1),2)}が, *B/D*(*B*:断面幅, *D*:断面高さ)が大 きい壁式橋脚に対しては,増し厚が増加し,空間利用上 の問題が生じる。

そこで著者らは, 躯体の拘束効率を上げるとともに中 間貫通材のための削孔本数を減少させ, さらに簡便な施 工を行える工法として図-1に示すような,曲面状分割鋼 板を用いた壁式橋脚の耐震補強工法を考案した。本工法 は曲面状鋼板を中間貫通材(貫通PC鋼棒)で躯体に取付け, 内部にコンクリートを充填するものである。曲げ補強が 必要な際は, 旧躯体側面にディンプル(窪み)を切削成 形して新旧コンクリートの一体化を図る³とともに, 新 コンクリート内部に曲げ補強用鉄筋を設置する。

著者らは、文献^{4),5)}において、同様の構造を示している が、曲面状鋼板を水平方向に連続させているため、以下 のような課題があった。

*1 (株)大林組 技術研究所 工博 (正会員)
*2 (公財)鉄道総合技術研究所 工修 (正会員)
*3 (公財)鉄道総合技術研究所 (正会員)

- 1)曲面状鋼板のうち中間貫通材による固定箇所で生じる局所的な曲げが弱点となり、変形性能の決定要因となっていた。
- 2)大規模な橋脚においては鋼板が大きくなるため、施 工性において改善の余地があった。
- 3)中間貫通材の位置に関して調整の余地がないため, 曲面状鋼板の加工は削孔終了後とせざるを得なかった。

本工法では、図-2の断面図に示す通り、円弧状の曲 面状鋼板と中間貫通材位置の接続鋼材に分離した。接続 鋼材は厚肉化するとともにスティフナーを設けることで、 中間貫通材固定箇所での局所的な曲げに抵抗できるよう にした。曲面状鋼板と接続鋼材は分離することで可搬性 を向上させるとともに、その接合を摩擦接合とすること により、中間貫通材位置の施工誤差に対応可能な余地を 設けた。また、無溶接であるため溶融亜鉛メッキを用い るなど高耐久化が容易であるという特長も有する。

本工法と標準的な耐震補強工法である鋼板巻立て工法 による橋脚躯体への拘束のメカニズムを図-3に示す。鋼 板巻立て工法,本工法とも中間貫通材反力が鋼板を介し て既設コンクリートに伝達されるが,鋼板巻立て工法で

は導入される拘束力が中間貫通材位置と隅部に集中する ため、橋脚幅全体に拘束を与えることが難しい。また、 中間貫通材位置の鋼板が局部曲げを受けるため、鋼板を 有効に使うことができない。これに対し、本工法では、 拘束力が曲面状鋼板の円周方向のフープテンションを介 して新設コンクリートに導入されるため、橋脚幅全体に 拘束力が伝達され、結果的に中間貫通材の水平方向間隔 を大きくすることができる。

新旧コンクリートの界面に設けるディンプルは、特殊 ビットを用いてコアドリルにより旧コンクリートに凹面 (ディンプル)を設け、新設コンクリートがディンプル に充填されることによりせん断伝達を行うものである³⁾。 ディンプル1個当たりのせん断伝達性能が明らかであれ ば、必要なせん断力に対してディンプルの個数を設計す ることができ、個数およびディンプルの形状を管理する ことで容易に性能を担保することができる。また、目粗 し時に発生する騒音振動を低減できるとともに、はつり ガラも発生しないため、環境に配慮した工法ということ ができる。なお、ディンプルによるせん断伝達は、曲面 状分割鋼板による耐震補強工法以外の曲げ補強工法にお いても適用することが可能である。

本論文は,曲げ補強を行った試験体およびせん断補強 を行った試験体に対して行った正負交番水平載荷実験に ついて示す。曲げ補強を行った試験体の実験(以下,曲 げ補強実験と称す)に関しては,耐力および変形性能に 着目した。せん断補強を行った試験体に対して行った実 験(以下,せん断補強実験と称す)に関しては,せん断 破壊耐力およびせん断破壊性状に着目した。これらの実 験を通して,本工法の有効性について確認することが目 的である。

2.曲げ補強実験

2.1 実験方法

(1) 試験体

試験体は1体であり、実構造物の1/5程度のスケールを 想定して図-4に示す寸法とした。既設部分は、軸方向鉄 筋比0.40%、せん断補強筋なしであり、実在する橋脚を 参考に配筋を設定した。補強後の軸方向鉄筋比は1.36%、 せん断補強筋比0.10%(SD345強度換算した場合0.30%)ま で高めている。補強軸方向鉄筋は、フーチング上端位置 においてフーチング内に定着された鉄筋と機械式継手に

より接合することで確実に定着することとした。

新旧コンクリートー体化用のディンプルは、文献³に 示される耐力算定法を用いて、ずれせん断破壊が生じな いように片面あたり72個と定めた。大きさは、実大と同 様の直径 ø100mm、深さ30mmである。配置は、基部1D 区間以外に均等とした。基部1D区間に配置していない理 由は、ずれ変形が生じにくい基部周辺ではディンプルの 性能を十分に発揮するのが困難であること、および塑性 ヒンジ形成後にディンプルの性能が劣化する恐れがある ことである。

基部においては、フーチング上面と補強部分の間に高 さ20mmの隙間を設け、補強コンクリートが圧縮を負担 しないようにした。これは、補強コンクリートの圧縮に 対してディンプル個数の設計を行うとディンプル数が過 大となるにも関わらず、補強コンクリート圧縮負担によ る水平耐力増加が大きくはないためである。

曲面状鋼板は高さ150mmごとに分割した。接続鋼材は, 曲面状鋼板3段毎に分割する構成(高さ450mm)を基本と したが,接続鋼材の曲げ負担によるひび割れの局所化を 防ぐため,基部1D範囲のみは曲面状鋼板と同じ高さ(高 さ=150mm)で分割した。

曲面状鋼板と接続鋼材は、摩擦接合用高力ボルト F10T(M16)を用いて、摩擦接合した。ボルト本数は、曲 面状鋼板の引張破断に対して設計した。

貫通PC鋼棒は,既設コンクリートを打設する前に埋込 み,接続鋼材取付け時に人力により緩まない程度に締め 付けた。積極的なプレストレス導入は行っていない。

a)鋼材							
部位	サイズ	材質	降伏強度 (N/mm ²)	引張強度 (N/mm ²)		ヤング係数 (kN/mm ²)	
既設 軸方向鉄筋	D13	SD345	382	567		196	
補強 軸方向鉄筋	D19	SD345	396	581		193	
貫通PC鋼棒	φ11	C種	1234	1307		207	
曲面状鋼板	t1.6	SPHC	256	365		203	
接続鋼材	t4.5	SPHC	194	334		201	
b)コンクリート							
部位	压病	圧縮強度		割裂強度		ヤング係数	
	(N	(N/mm^2)		(N/mm^2)		(kN/mm ²)	
既設躯体		23.2		2.26		24.0	
補強部		37.8	2.5	2.57 25.8		25.8	

表-1 材料特性

試験体材料は表-1に示す通りである。中間貫通材は本 数を低減するためにPC鋼棒とした。曲面状鋼板および接 続鋼材はSS400材相当として,SPHC材を用いた。既設躯 体のコンクリートは比較的低い強度とした。補強部のコ ンクリートは、ディンプルのせん断強度を保証するため, 文献³に従い圧縮強度36N/mm²以上とした。

(2) 載荷方法

試験体天端を面外曲げが生じる方向へ水平に加力した。鉛直方向の軸力は与えていない。載荷履歴は,部材回転角が±1/200,±1/100,±2/100,±3/100,±4/100, ±5/100,±6/100となる各変位において3回ずつ繰返した。

2.2 実験結果

(1) 荷重部材回転角関係および破壊過程

図-5に荷重-部材回転角関係を示す。図中,既設軸 方向鉄筋および新設軸方向鉄筋の降伏点は、各軸方向鉄 筋の基部位置に張り付けたひずみゲージの値が降伏ひず みに達した点とした。最大耐力計算値,降伏耐力計算値 および補強前最大耐力計算値は,平面保持の仮定を用い て算定する鉄道標準⁶⁰の計算方法に従って計算したもの であるが,材料強度には**表-1**の実材料強度を用い,安全 係数は1としている。また,上軸の塑性率は,既設軸方向 鉄筋の降伏変位を基準とした。

部材回転角1/100のステップで、補強前最大耐力計算値 を大きく超え、既設および補強軸方向鉄筋が降伏ひずみ に至ったが、有効高さの小さい既設軸方向鉄筋のほうが わずかに早かった。

部材回転角2/100のステップで曲面状鋼板は降伏に至った。ただし、外見上も荷重-変位関係上も大きな変化 はなかった。

部材回転角3/100のステップで最大耐力に達した。その 時の耐力(P=620kN)は計算値の1.17倍であり、本工法によ り曲げ補強が可能であることが明らかとなった。部材回 転角3/100の2ステップ目以降は、曲面状鋼板の膨らみが 顕著になるとともに徐々に耐力が低下した。

最終的に、部材回転角6/100の2サイクル目以降に、図

図-6 最終破壊状態

-6に示す最下段曲面状鋼板上端の高さ(下から170mm) で補強軸方向鉄筋の破断が順次生じて耐力が急激に低下 した。曲面状鋼板は大きくはらみだしたが,曲面状鋼板, 接続鋼材および貫通PC鋼棒の破断は生じなかった。

最終的な靱性率は,既設軸方向鉄筋の降伏を基準とした場合で15.2,補強軸方向鉄筋の降伏を基準とした場合で11.4であり,非常に良好な変形性能を得られることがわかった。

(2) 平面保持の検討

本実験においては、有効高さの大きい補強軸方向鉄筋 に先んじて既設軸方向鉄筋が降伏している。このことは 平面保持の仮定が完全には成立していないことを示して いる。そこで、平面保持に関して検討する。

図-7に,各載荷ステップ1サイクル目のピーク時における高さ225mm位置断面における鉄筋ひずみの分布を示す。

両鉄筋が降伏に至る部材回転角1/100までは不完全な がらもおおむね平面保持が図れていることがわかる。

部材回転角3/100以降については、補強軸方向鉄筋のひ

ずみが若干低いことがわかる。しかし、補強軸方向鉄筋 のひずみは塑性硬化領域である20000 μ以上に達してお り、新旧コンクリート界面のズレせん断力は確実に伝達 できていると考えらえる。

また,(1)に示す通り,最大耐力に関しては,平面保持 を仮定した計算値を上回っており,平面保持を仮定した 耐力計算が可能であるといえる。

以上より、ディンプルにより新旧コンクリート面でせ ん断伝達させる方法は、若干のズレが発生することによ り完全な平面保持状態を実現することはできないものの、 耐力計算においては平面保持を仮定することが可能であ る。

(3) 曲面状鋼板の挙動

図-8に最下段曲面状鋼板の頂部における水平方向ひ ずみの履歴を示す。平面位置は、荷重が正の時に圧縮側 となる面である。軸ひずみおよび曲げひずみは、曲面状 鋼板外面に貼付した曲げひずみゲージにより計測した。

軸ひずみと曲げひずみを比較すると、曲げひずみは非 常に小さく、ほぼ軸変形となっていることがわかる。従 って、フープテンションにより軸力で抵抗させるという 曲面状の目的が達せられていることがわかる。

軸ひずみは,部材回転角2/100のステップの2サイクル 目以降,圧縮側となる時に軸ひずみが増加しているが, 軸方向鉄筋の座屈挙動のためと考えられる。

2.3 曲げ補強実験のまとめ

曲面状分割鋼板を用いた耐震補強工法により曲げ補強

を行った壁式橋脚模型の正負交番水平載荷実験を行った。 実験により、以下のことがわかった。

- 1)本工法により,耐力を向上させ,良好な変形性能を 得ることができる。
- 2)ディンプルを用いて新旧コンクリート界面のせん断 伝達を行うことが可能である。その際,耐力は平面保 持を仮定して算定することができる。
- 3)曲面状鋼板にはフープテンションが働いており,効 率的な躯体拘束が可能である。

3. せん断補強実験

3.1 実験方法 (1) 試験体

試験体は2体であり、実構造物の1/5程度のスケールを 想定して表-2および図-9に示す諸元とした。実験パラ メータは貫通PC鋼棒の量とし、 *φ*9.2mm PC鋼棒(C種)の 間隔を変更することで、2種類のせん断補強筋比とした。

既設部分の配筋は、せん断補強筋は配置しなかった。 軸方向鉄筋は曲げ破壊を避けるために異形PC鋼棒を用 いた。新旧コンクリートの界面は、曲げ補強を行わない ため、無処理とした。基部におけるフーチング上面と補 強部分の間の隙間、曲面状鋼板の分割、曲面状鋼板と接 続鋼材の接続、貫通PC鋼棒の締付けは2.1節に示す曲げ 補強実験と同様である。

試験体材料は表-3に示す通りである。中間貫通材は実物と同様にPC鋼棒とした。曲面状鋼板および接続鋼材は SS400材相当として,SPCC材およびSPHC材を用いた。 既設躯体のコンクリートは比較的低い強度とした。

(2) 載荷方法

試験体天端を面外せん断が生じる方向へ水平に加力した。鉛直方向の軸力は与えていない。載荷履歴は,部材回転角が±2/1000,±4/1000,±6/1000,±30/1000となる各変位において1回繰返した後,プッシュオーバーとした。

3.2 実験結果

(1) 荷重変位関係及び破壊過程

図-10に荷重-変位関係を示す。図中に示す計算耐力 は、トラス理論の仮定を用いて算定する鉄道標準⁶⁰の計 算方法に従って計算したものであるが、材料強度には表 -3の実材料強度を用い、安全係数は1としている。補強 部のコンクリート断面は考慮していない。また、せん断 補強鉄筋(貫通PC鋼棒)に関しては強度の上限を考慮せず 実材料強度を用いている。

S-1試験体は,部材回転角2/1000(P=463kN)のステップ で曲げひび割れが生じた。部材回転角4/1000のステップ (P=697kN)で部材軸から45°程度のせん断ひび割れが生 じるとともに,貫通PC鋼材のひずみも大きくなっていっ

2 2 270円用玉式点外中日70						
	=± -			試験体		
· · · · · · · · · · · · · · · · · · ·				S-1	S-2	
	断面幅:	В	(mm)	20	00	
外形	断面高さ:	D	(mm)	450 400		
寸法	有効断面高さ:	d	(mm)			
	せん断スパン:	а	(mm)	1200		
引張	本数と直径:	-	(-)	14本-D25 (SBPD1080/1230)		
或大 月力	引張鉄筋比:	p_t	(%)	0.788		
貫通 PC 鋼棒	本数と直径:	-	(-)	4本- φ 9.2 (SBPR1080/1230)		
	ピッチ:	S	(mm)	113	225	
	帯筋比:	p_w	(%)	0.118	0.059	
	等価帯筋比*:	p_w^{eq}	(%)	0.368	0.185	
	降伏強度**:	f_{wy}	(N/mm ²)	1250		
	拘束応力:	$p_w \times f_{wy}$	(N/mm ²)	147.1	73.9	

<u>表-2 せん断補強試験体諸元</u>

147.1 / 7.9 147.1 / 7.9 *: SD345に強度換算した値。
**: 材料試験に基づいた値。

表-3 材料特性 a)鋼材

部位	11 1	4.4 FF	降伏強度	引張強度	ヤング係数	
	デイス	材貨	(N/mm^2)	(N/mm^2)	ヤング係数 (kN/mm ²) 200 203 196 201 世 枚値	
既設	D25	で種	1080	1220	200	
軸方向鉄筋*	D25	し山田	1080	1230	200	
貫通PC鋼棒	φ9.2	C種	1250	1305	203	
曲面状鋼板	t1.2	SPCC	206	325	196	
接続鋼材	t4.5	SPHC	194	194	201	
*既設軸方向鉄筋は材料試験を行っていないため規格値						

h)	_	۰,	F	11	_	F
U)	_	~	· /	יי	_	~

試験体	S-	-1	S-2			
部位	圧縮強度	ヤング係数	圧縮強度	ヤング係数		
	(N/mm^2)	(kN/mm ²)	(N/mm^2)	(kN/mm ²)		
既設躯体	26.9	-	27.0	24.1		
補強部	42.9	-	43.1	25.9		

た。部材回転角6/1000(P=846kN)を超えて、荷重が上昇す るとともに、部材軸との角度が小さいひび割れが増加し ていったが、部材回転角+30/1000(P=2107kN)においても せん断破壊には至らなかった。ただし、③~⑥(位置は 図-9参照)の4段の貫通PC鋼棒は降伏に至っていた。そ の後、負側も同変位まで載荷したのち、正側載荷を行っ た際に、部材回転角+30/1000のステップで計測された荷 重(P=2107kN)まで至らずに、荷重P=1999kNで③~⑥の4 段の貫通PC鋼棒が破断して荷重が急落した。最大荷重は、 せん断耐力計算値の1.31倍であった。

S-2 試験体は,部材回転角 2/1000(P=452kN)のステップ で曲げひび割れが生じた。部材回転角 4/1000 のステップ (P=673kN)で部材軸から 45°程度のせん断ひび割れが生 じるとともに,貫通 PC 鋼材のひずみも大きくなってい った。部材回転角 6/1000(P=846kN)を超えて,荷重が上 昇するとともに,部材軸との角度が小さいひび割れが生 じて 45°程度のひび割れと一体となり,荷重 P=1432kN の際に,②,③の 2 段の貫通 PC 鋼棒が破断して荷重が 急落した。最大荷重は,せん断耐力計算値の 1.31 倍であ った。

最終的に降伏に達している貫通PC鋼棒の段数に貫通 PC鋼棒平均間隔を乗じると、いずれも450mmとなる。従って、45°のひび割れを想定して有効なせん断補強筋範 囲をz=347mm(z: 圧縮応力の合力位置から引張鋼材の図 心までの距離で一般にd/1.15)とする鉄道標準⁶⁾のせん断 耐力式よりも広い範囲の貫通PC鋼棒が有効となってい ることがわかる。

また,貫通PC鋼棒ひずみは降伏ひずみを超え,何本か は破断まで達しているため,貫通PC鋼棒が負担するせん 断耐力の算定において,貫通PC鋼棒の降伏強度を用いて 算定することは合理的である。

図-11 に最終破壊状況を示す。図中に示している破線 は貫通 PC 鋼棒の位置を示している。ひび割れ性状は, せん断補強筋量の多い S-1 試験体のほうが分散して発生 しており,通常の RC 構造と同様の傾向が見られた。

(2) 貫通 PC 鋼棒およびコンクリートの負担せん断力

前項で示した降伏に至った貫通PC鋼棒(S-1試験体で ③~⑥,S-2試験体で②~③)の引張力の合計を貫通PC 鋼棒負担せん断力*Vs^{exp}と*した時の,貫通PC鋼棒負担せん 断力*Vs^{exp}と*荷重の関係を図-12に示す。貫通PC鋼棒の引 張力は計測したひずみに断面積と**表**-3に示すヤング係 数をかけて算定した。弾性を仮定しているため,破線で 示している貫通PC鋼棒降伏以降の挙動は実際の負担せ ん断力とは異なっている。図には、合わせて、せん断補 強鋼材を用いない棒部材の設計せん断耐力の計算値*Vc^{cal}* に横軸を足した*Vc^{cal}+Vs*の関係も示し、せん断耐力の計算 値*Vc^{cal}+V^{cal}*にマーキングをした。これは、せん断ひび割 れ発生まではコンクリートがせん断力を負担し、それ以 上のせん断力は貫通PC鋼棒が負担すると考える関係を 表している。計算値はすべて、**表**-3の実材料強度を用い 安全係数は1として鉄道標準⁶に従って算定した。

いずれの試験体においても、 V_s^{exp} が大きくなりだす時 の荷重は $V_c^{cal}+V_s$ のy切片と一致しており、せん断ひび割 れ発生耐力は、鉄道標準⁶⁾のせん断補強鋼材を用いない 棒部材の設計せん断耐力 V_c^{cal} を用いて算定可能であるこ とがわかる。

破線で示された領域を除くと、いずれの試験体におい ても、荷重はV_c^{cal}+V_sの線に沿って上昇しており、ひび割 れ後のコンクリート負担せん断耐力V_cの劣化はほとんど 見られないことがわかる。鉄道標準⁶においては、「極め て高強度の鉄筋をせん断補強筋として使用すると、せん 断破壊時の斜めひび割れ幅が過大になり、ひび割れ面に おける骨材の噛み合いや引張鉄筋のダウエルアクション 等によって抵抗するせん断耐力が低下することがある」 ことから、設計に用いるせん断補強筋の強度には上限を 設けることが規定されている。しかし、本構造では、曲面状鋼板により断面全体を確実に拘束することから、ひ び割れ幅の増大によるせん断耐力Vの低減は考慮する必 要がないものと考えられる。

3.3 せん断補強実験のまとめ

曲面状分割鋼板を用いた耐震補強工法によりせん断補 強を行った壁式橋脚模型の正負交番水平載荷実験を行っ た。実験により,以下のことがわかった。

- 1)本工法により、せん断耐力を向上させることが可能 である。
- 2)本工法によりせん断補強した場合のせん断耐力は、 鉄道標準⁶⁾に記載されている梁部材のせん断耐力算定 法により、安全側に算定することが可能である。その 際、貫通PC鋼棒の降伏強度について、低減する必要 はない。

4. まとめ

曲面状分割鋼板による補強工法を考案した。本論文で は、曲げ補強を行った試験体およびせん断補強を行った 試験体それぞれに対して、正負交番載荷実験を行った結 果を示した。実験の結果から、本工法の成立性、良好な 変形性能、およびせん断耐力の算定法について明らかと することができた。

今後は,変形性能や構造細目などについても設計法を まとめ,実用に供していく予定である。

参考文献

- Pristley, M.J.N. Seible, F. and Calvi, G.M.: Seismic Design and Retrofit of Bridges, John Willey & Sons, Inc., pp.267-273,585-595, 1996
- 井ヶ瀬良則:壁式橋脚の楕円巻立て補強に対する地 震時保有耐力法の適用,第1回地震時保有耐力法に 基づく橋梁の耐震設計に関するシンポジウム論文 集,pp.89-92,1998.1
- 3) 武田篤史,田中浩一,岡本大,谷村幸裕:ディンプ ルによる新旧コンクリート間のせん断伝達性能,コ ンクリート工学年次論文集, Vol.34, 2012.6
- 大内一,田中浩一:曲面鋼製セグメントによる壁式 橋脚の耐震補強実験,土木学会年次学術講演会講演 概要集 V, Vol.51, pp. 1068-1069, 1996.9
- 5) 武田篤史,田中浩一,大内一:曲面状鋼製セグメントにより耐震補強された壁式橋脚の靭性評価法,コンクリート工学論文集,第10巻第2号,pp.29-42, 1999.5
- 6) 鉄道総合技術研究所:鉄道構造物等設計標準・同解
 説 コンクリート構造物,丸善,2004.4