# 論文 傾斜型あと施エアンカーを用いて袖壁補強した RC 柱の構造性能に 関する実験的研究

貞末 和史<sup>\*1</sup>·藤井 稔己<sup>\*2</sup>·石村 光由<sup>\*3</sup>·南 宏一<sup>\*4</sup>

要旨: コンクリート系建物の耐震補強で用いられるあと施工アンカーを施工面に対して傾斜させて固着する と接合部のせん断強度が増大すると考えている。本研究では接合部のせん断実験を行なって、引張力下では 傾斜型あと施工アンカーを用いた場合のせん断強度の増大効果は小さいものの、圧縮力下ではせん断強度の 増大効果が大きくなることを明らかにした。さらに、傾斜型あと施工アンカーを適用して袖壁増設補強した 鉄筋コンクリート柱の曲げ・せん断実験を行い、在来型あと施工アンカーを用いた場合と比較して、傾斜型 あと施工アンカーを用いた場合は、既存柱の破壊形式に関わらず、終局強度が大きくなることを示した。 キーワード:耐震補強、袖壁補強、接合部、あと施工アンカー、せん断強度、終局強度

### 1. はじめに

コンクリート系建物の耐震補強で用いるあと施工アン カーを施工面に対して 45° 傾斜させて, 接合部のせん断 剛性とせん断強度を増大させる接合工法(以後, 傾斜型 あと施工アンカー)を考案し, 接着系あと施工アンカー を対象として, せん断強度の増大効果を定量化すると共 に, せん断強度の増大効果が得られる適用条件を明らか にしている<sup>1)</sup>。また, 傾斜型あと施工アンカーを鉄筋コ ンクリート柱の袖壁増設補強へ適用した載荷実験を行い, 一定圧縮軸力下で正負繰返しの曲げ・せん断力を受ける 場合の補強効果について検討している<sup>2)</sup>。

傾斜型あと施工アンカーが直列に配された袖壁増設補 強柱を図-1に示す。袖壁増設補強柱が水平力Hを受け る場合,既存柱と増設袖壁の接合面およびアンカー筋は, せん断力のみを受けるのではなく,アンカー筋の傾斜方 向と配置によって,a~dに示されるような複合応力を受 けると予測されるが,複合応力下の傾斜型あと施工アン カーの力学挙動については明らかにされていない。



そこで、本論では、引張力あるいは圧縮力下でせん断 力を受ける傾斜型あと施工アンカーの力学挙動について 検討すると共に、傾斜型あと施工アンカーを適用して袖 壁増設補強した鉄筋コンクリート(以後, RC と称す) 柱の構造性能について実験的に明らかにする。

#### 2. 実験計画

#### 2.1 試験体

#### (1) 接合部試験体

コンクリート施工面への垂線に対してアンカー筋を 45°傾斜させた接着系あと施工アンカーが引張力あるい は圧縮力とせん断力の複合応力を受けて、コンクリート の支圧破壊、コーン状破壊および付着破壊に対してアン カー筋の降伏が先行する場合のせん断強度について検討 することを意図した実験を計画した。試験体計画を表-1に示す。実験変数はアンカー筋の傾斜の有無,接合面 鉛直力の有無とした。

試験体形状を図-2 に示す。アンカー筋は 8-D10 (SD295A)の異形鉄筋を用いた先付けアンカーとし, 既存部側および増設部側への埋込み長さはアンカー筋直 径 daの12 倍とした。アンカー筋は千鳥配置とし,在来 型アンカー試験体および傾斜型アンカー試験体をそれぞ れ3 体ずつ製作した。本試験体は既報<sup>1)</sup>で提案した評価 式によって,他の破壊形式に対してアンカー筋の降伏が 先行することを確認しており,この場合はあと施工アン カーと先付けアンカーの違いが実験結果に与える影響は 小さいと考えている。なお,アンカー筋の数量と配置お よび接合面近傍の配筋は,後述する袖壁補強柱試験体 SN, SD における鉛直接合面と同様の設計詳細としている。

\*1 広島工業大学 工学部建築工学科准教授 博士(工学) (正会員)
\*2 福山大学大学院 工学研究科地域空間工学専攻 修士(工学) (学生会員)
\*3 石村設計事務所 博士(工学) (正会員)
\*4 福山大学 名誉教授 工博 (名誉会員)



図-2 試験体形状(接合部)

-筋 アンカ 試験体 接合面鉛直力 種別 傾斜角度 -40kN ΤN NN 0° 0kN CN 8-D10 80kN TD (SD295A) -40kN 45° ND 0kN CD 80kN

表-2 コンクリートの材料強度

ヤング係数

 $(N/mm^2)$ 

降伏強度 引張強度 伸び

実験シリーズ

引張

 $(N/mm^2)$ 

圧縮

 $(N/mm^2)$ 

庙田笛正

使用箇所

表-1 試験体計画(接合部)

| 既存部 | 22.6 | 1.96 | 26363 | 按入如        |  |  |  |
|-----|------|------|-------|------------|--|--|--|
| 増設部 | 25.8 | 2.40 | 27914 | 山口口口       |  |  |  |
| 既存部 | 25.4 | 2.66 | 26840 | 加度対応力      |  |  |  |
| 増設部 | 32.5 | 2.63 | 30047 | 个田空工作用力出行工 |  |  |  |
|     |      |      |       |            |  |  |  |
|     |      |      |       |            |  |  |  |
|     |      |      |       |            |  |  |  |

| 表-3 鋼材の材料 | ·強度 |
|-----------|-----|
|-----------|-----|

| 反加固別         |     | $(N/mm^2)$ | $(N/mm^2)$ | (%)  |
|--------------|-----|------------|------------|------|
| 主筋           | D16 | 372        | 546        | 18.2 |
| 主筋           | D13 | 366        | 520        | 21.1 |
| 帯筋           | D13 | 369        | 521        | 16.8 |
| 帯筋           | D6  | 355        | 508        | 18.6 |
| 壁縦筋          | D10 | 391        | 550        | 18.8 |
| 壁横筋          | D6  | 355        | 508        | 18.6 |
| アンカー筋(鉛直接合面) | D10 | 348        | 477        | 18.7 |
| アンカー筋(水平接合面) | D13 | 369        | 521        | 16.8 |
|              |     |            |            |      |

試験体の製作は,既存躯体に相当する部分のコンクリ ートを打込み後、上端面をコテで均して平滑にし、コン クリート硬化後、上端面にグリースを塗り、増設部に相 当する部分のコンクリートを打込んだ。既存部と増設部 の接合面の固着力は初期剛性に大きな影響を与えるが, 微小な変形で固着力が喪失した直後、急激に耐力低下す る。固着力が大きな接合部ではアンカー筋の効果が不明 瞭になるため<sup>3)</sup>,本実験では接合面におけるコンクリー ト打継ぎ部の固着力を取り除いた。

接合面鉛直力 jN は圧縮力を正とし, jN=-40kN, 0kN, 80kNの3種類とした。*jN*=-40kNは0.2*aNy*(ここに, *aNy* はアンカー筋の引張降伏強度)として設定した。一方,

iNが圧縮の場合はアンカー筋が負担する圧縮力が小さく なると考えられるため, jN=80kN として引張力を受ける 場合よりも大きな値に設定した。

試験体に用いたコンクリートと鋼材の材料強度を表 -2, 表-3にそれぞれ示す。

#### (2) 袖壁増設補強した RC 柱試験体

試験体は在来型あと施工アンカーを用いて両側袖壁 増設補強することを想定した RC 柱 2 体 (SN, MN), 傾 斜型あと施工アンカーを用いて両側袖壁増設補強するこ とを想定した RC 柱 2 体 (SD, MD) の合計 4 体とした。 試験体計画を表-4 に示す。実験変数はアンカー筋の傾 斜の有無および既存 RC 柱の破壊形式とした。

試験体形状を図-3 に示す。全試験体とも、柱断面 300mm×300mm,内法 900mm でせん断スパン比を 1.5 とし、主筋と帯筋の数量を変えることで、補強前の柱の 破壊形式がせん断破壊先行型(SN, SD)および曲げ破 壊先行型(MN, MD)となるように設計した。増設袖壁 断面は150mm×450mmで全試験体とも同一配筋とした。

柱と袖壁を接合するアンカー筋は接合部試験体と同 様に異形鉄筋を用いた先付けアンカーとし、鉛直接合部 の各面には 8-D10 (SD295A) を千鳥配置し,水平接合部 の各面には 8-D13 (SD345) を用いた。鉛直接合部のせ ん断強度は, 既報1)の評価式を用いてアンカー筋の降伏 が先行するように設計しており、柱側、袖壁側共に埋込 み長さは12daとした。水平接合面アンカー筋の埋込み長 さは,梁(スタブ) 側へは 12da, 袖壁側へは 10da とした。

試験体製作は柱梁の鉄筋とアンカー筋を配した後、コ ンクリートを打込み, コンクリート硬化後脱型し, 鉛直 接合面にグリースを塗って接合部試験体と同様にコンク リート打継ぎ部の固着力を絶縁した。一方で、水平接合 面には2~3mmの凹凸を有する目粗しを施して,壁筋を 配した後、袖壁コンクリートを打込んだ。なお、柱、袖 壁共にコンクリートは試験体を横に倒して打込んでいる。

軸力 N は柱断面の圧縮耐力 Nu に対する作用圧縮軸力 の比*n*を0.2として設定した。

試験体に用いたコンクリートと鋼材の材料強度を表 -2, 表-3にそれぞれ示す。



表-4 試験体計画(袖壁補強柱)



用した。所定の一定圧縮軸力 N (=450kN) を導入後,正 負繰返しの逆対称モーメントを漸増載荷するものとした。 加力サイクルは部材角 R (上下スタブ間の相対水平変位 δ/柱内のり1)を変位制御し, R=±0.125%rad.を1サイク ル行なった後,次に R=±0.25%rad.および±0.5%rad.を2 サイクルずつ行い,それ以後は直前の振幅に対して R を

# -5(a)に示される位置に埋込んだボルトに変位計を取り付け *j*δ*u*を計測すると共に,既存部と増設部の接合面鉛

直方向の目開き幅<sub>i</sub>ふを計測した。また,試験体中央に位置するアンカー筋2本にひずみゲージを貼り付けひずみ 度を計測した。

の各振幅を2サイクルずつ行なった。変位の計測は、図

# (2) 袖壁増設補強した RC 柱試験体

袖壁補強柱試験体の載荷は図-6に示す載荷装置を使

±0.5%rad.漸増させる正負繰り返し載荷を 2 サイクルず つ行い, *R*=±3.0%rad.で実験を終了した。

変位の計測は、 $\delta$ を計測すると共に、図-5(b)に示さ れる位置に埋込んだボルトに変位計を取り付け、柱と袖 壁の相対ズレ変位  $j\delta_{\iota}$ を計測した。また、柱の主筋と帯筋、 袖壁の縦筋と横筋、鉛直接合面と水平接合面のアンカー 筋にひずみゲージを貼り付けひずみ度を計測した。

## 3. 実験結果および考察

# 3.1 接合部試験体

最終破壊状況の一例を**写真**-1, jQ- $j\delta$ , 関係,  $j\delta$ - $j\delta$ , 関 係,  $\varepsilon_{j\delta}$ , 関係および $\phi_{j\delta}$ , 関係の各履歴曲線を図-7に示 す。 $j\delta$ , および $j\delta$ , は前後左右の計測値の平均値とした。 アンカー筋の軸ひずみ度 $\varepsilon$ および曲率 $\phi$ は図-8 に示され る位置に貼り付けたアンカー筋両面のひずみゲージの計 測値を用いて算定した値を示した。図7中に示される 印はアンカー筋の降伏, 〇印の数値は正負それぞれの最 大耐力である。

いずれの試験体とも既存部と増設部の接合面に固着力

を有する場合に見られる載荷初期時の耐力上昇および微 小変形時の固着力喪失による急激な耐力低下<sup>3)</sup>はないこ とから,接合面の固着力は絶縁されていると思われる。 また,いずれの試験体とも実験終了まで試験体表面に大 きなひび割れや損傷はなく,最大耐力に達する前にアン



図-8 ひずみ度計測位置



```
写真-1 破壊状況
```



カー筋は降伏している。

jQ- $j\Delta_i$  関係に関して,在来型は接合面鉛直力の有無に 関わらず, $j\Delta_i$ =±1.0mm 程度で耐力上昇が穏やかになるが  $j\Delta_i$ の漸増と共に耐力が上昇し続けている。一方,傾斜型 は純せん断および圧縮力下では $j\Delta_i$ =±1.0mm で最大耐力 に達した後耐力低下を生じ,引張力下では $j\Delta_i$ =±0.5mm で 最大耐力に達した後耐力低下を生じた。在来型と傾斜型 の最大耐力を比較すると,引張力下では最大耐力の増大 効果は小さいものの,純せん断および圧縮力下では最大 耐力が 1.5 倍程度増大することが確認された。

純せん断を受ける傾斜型アンカーを用いた接合部は, 図-9(a)の方向にせん断力を受ける場合,在来型と比較 して耐力が増大するが、図-9(b)の方向にせん断力を受 ける場合は、アンカー筋が起き上がろうとして接合面近 傍での曲げ変形が卓越するため, 在来型と比較して耐力 が小さくなることが明らかにされている<sup>1)</sup>。試験体 ND および TD の j&-j& 関係を見ると, j& が急増し始めると 共に耐力低下を生じてしているため、本実験における耐 力低下も図-9(b)に示されるようなアンカー筋の曲げ 挙動の影響を受けて,アンカー筋の抵抗機構が軸方向抵 抗型から曲げ抵抗型へと変化することで耐力低下を生じ たものと思われる。一方, 圧縮力下の試験体 CD は, 図 -9(c)に示されるようにアンカー筋が起き上がろうと するのを圧縮力が抑制するため,最大耐力以降の耐力低 下が穏やかになったものと思われる。なお、耐力低下を 生じる前の振幅における在来型と傾斜型の $\varepsilon_i \delta_i$ 関係お よび $\phi_j \delta_u$ 関係を比較すると、 $\phi_j \delta_u$ 関係については顕著な 差異が見られないが, ε-jδ<sub>u</sub>関係については差異が見られ, 傾斜型では正負繰返し載荷によって引張ひずみと圧縮ひ ずみを交互に生じており, 軸方向型の抵抗機構が形成さ れていることが確認された。

#### 3.2 袖壁増設補強した RC 柱試験体

各試験体について最大耐力時の破壊状況を写真-2, Q-R 関係および<sub>J</sub> $\delta$ -R 関係の履歴曲線を図-10, Q-R 関 係の骨格曲線を図-11 に示す。 $_{j}\delta$ .は上下左右の計測値の 平均値とした。Qは軸力による転倒モーメントを考慮し たせん断力である。図中に示される〇印の数値は正負そ れぞれの最大耐力であり、実線(直線)は耐震改修設計指 針<sup>4)</sup>に示される袖壁増設補強柱のせん断終局強度の計算 値Q<sup>u</sup> である。なお、全試験体とも曲げ終局強度の計算値 はせん断終局強度の計算値を上回っている。また、点線 (直線)は耐震診断指針<sup>5)</sup>に示される柱のせん断終局強 度(SN, SD)あるいは曲げ終局強度(MN, MD)の計算値で ある。いずれの試験体に関しても、最大耐力の実験値は 計算値Q<sup>u</sup>を上回っていることが確認された。

試験体 SN および SD の破壊進展状況は, 柱材端部の 斜めひび割れの発生, 袖壁材端部の斜めひび割れの発生,



写真-2 破壊状況

柱を貫通して袖壁端部から袖壁端部へ渡る斜めひび割れ の発生,柱帯筋と袖壁横筋の降伏の順に進行し,最大耐 力に達した。それ以後の振幅では,柱材端の主筋が引張 降伏し,柱全体に渡り斜めひび割れが増大すると共に 徐々に耐力低下して, *R*=±2.0%rad.以降の振幅では袖壁 端部に圧壊を生じた。なお,袖壁縦筋と水平接合面のア ンカー筋は引張降伏する以前に圧縮降伏している。

試験体 MN および MD の破壊進展状況は,柱材端部の 曲げひび割れ発生,柱材端部および袖壁材端部の斜めひ び割れ発生,柱材端の主筋の引張降伏,袖壁中央部の斜 めひび割れ発生の順に進行し,最大耐力に達した。それ 以後の振幅でも,柱帯筋と壁横筋は降伏することなく, SN および SD 試験体と比較して柱中央部の損傷は軽微で あるが,振幅の漸増に伴い袖壁端部が圧壊し,徐々に耐 力低下した。

在来型と傾斜型を比較すると、最大耐力に関しては、 純せん断および圧縮力下の接合部試験体ほどの顕著な差 異はないが、傾斜型を用いた袖壁増設補強柱の方が最大 耐力が増大することが確認された。一方で、破壊の進展 状況、Q-R関係における初期剛性や最大耐力以降の耐力 低下状況、j&-R関係に顕著な差異は見られない。

なお,本論で用いた袖壁増設補強柱試験体は鉛直接合



面のアンカー筋量が比較的少ないため、最大耐力に達し ている R=±1.0%rad.の振幅では j & が 3mm 程度のズレを 生じており、柱と袖壁は一体となって挙動していない。 鉛直接合面のアンカー筋量が多く、柱と袖壁が一体とな って挙動し最大耐力時に達する袖壁増設補強柱の構造性 能については、今後、検討する予定である。

## 4. まとめ

一定接合面鉛直力と正負繰返しせん断力の複合応力を 受ける傾斜型アンカーを用いた接合部の載荷実験を行な った。さらに、傾斜型アンカーを RC 柱の袖壁増設補強 へ適用し、一定圧縮軸力下で正負繰返しの水平力を与え る載荷実験を行なった。本研究によって得られた成果を 以下にまとめる。

- 在来型アンカーを用いた接合部と比較して、傾斜型 アンカーを用いた接合部は、接合面鉛直力の有無に 関わらずせん断強度が大きくなる。なお、純せん断 を受ける場合と比較して、引張力下ではせん断強度 の増大効果が小さく、圧縮力下ではせん断強度の増 大効果が大きくなったが、これは、圧縮力がアンカ 一筋の曲げ変形を抑制し、せん断力に対する抵抗機 構が変化することが影響している。
- 2) アンカー筋の量が少なく、柱と袖壁の接合面にズレ を生じて最大耐力に達する袖壁補強柱では、在来型 アンカーを用いた場合と比較して、傾斜型アンカー

を用いた場合は,既存柱の破壊形式に関わらず,最大耐 力が大きくなる。

#### 謝辞

本研究の実施にあたっては、平成 26 年度科学研究費 補助金「基盤研究(C)課題番号:26420571 代表研究者: 広島工業大学准教授 貞末和史」による助成を受けまし た。ここに記して謝意を表します。

#### 参考文献

- 貞末和史,津吉真人,石村光由,南宏一:傾斜させ た接着系あと施工アンカーのせん断耐力,日本建築 学会構造系論文集,第74巻,第644号,pp.1813-1820, 2013.1
- 2) 石村光由,貞末和史,藤井稔己,南宏一:傾斜型あ と施工アンカーを用いた両側袖壁増設補強 RC 柱に 関する基礎的研究,コンクリート工学年次論文集, Vol.36, No.2, pp. 841-846, 2014.7
- 3) 石村光由,貞末和史,藤井稔己,南宏一:複合応力 下における傾斜型あと施工アンカーのせん断強度 に関する実験的研究,日本建築学会中国支部研究報 告集,第37巻,pp.141-144,2014.3
- 4) 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震改修設計指針同解説,2001.1
- 5) 日本建築防災協会:既存鉄筋コンクリート造建築物 の耐震診断基準同解説, 2001.1