論文 施工年の異なる構造物より採取したコンクリートの力学的特性および細孔構造に関する一考察

前原 聡*1·鈴木 将充*1·伊藤 正憲*2·山田 久美*3

要旨:本研究では,昭和2年に構築し,その後,昭和25年,39年および57年に大規模な増改築がなされた 構造物を対象とした。その構造物よりコア供試体を採取し,圧縮強度,静弾性係数,中性化深さおよび細孔径 分布を求め,施工年の違いによる影響を考察した。圧縮強度と静弾性係数の関係は,施工年によらず算出式 よりも全体的に小さくなる傾向を示した。その中でも,昭和2年のコア供試体は径が大きな骨材が占める割 合が高く,圧縮強度と静弾性係数は小さくなる傾向を示した。また,総細孔量と細孔径0.5µm以上の細孔量 の総和が大きくなると圧縮強度と静弾性係数は小さくなり,中性化速度係数は大きくなる傾向を示した。 キーワード:圧縮強度,静弾性係数,中性化深さ,粗骨材表面積,細孔径分布

1. はじめに

現在供用中のコンクリート構造物には昭和初期に構築 され,85年以上経過したものや,戦後間もない建設資材 不足の社会情勢下において構築されたもの,高度経済成 長期の最中に急速に構築されたものなどが多様に存在し ており,これらのコンクリート構造物は,経年劣化の進 行や,施工・材料不良に起因する耐久性劣化が顕在化し ているものが少なくない。

そのようなコンクリート構造物が数多く存在する中, 2012 年 12 月に発生した中央自動車道笹子トンネル天井 板落下事故により,改めてインフラの老朽化が深刻な問 題であることが認識されている。国土交通省では,2013 年 11 月に国民生活やあらゆる社会経済活動を支える各 種施設をインフラとして幅広く対象とし,戦略的な維持 管理・更新等の方向性を示す基本的な計画として、「イン フラ長寿命化基本計画」¹⁾をとりまとめた。その発表をふ まえ,実構造物の劣化予測やヘルスモニタリングなど延 命化に関する技術の高度化を図り、インフラの維持管理, 長寿命化技術を確立することが急務となっている。

昭和初期から 85 年以上が経過し,その間,セメントの 製造方法や骨材の種類,混和材料の使用などの材料的な 特性や生コン工場による生コンクリートの製造やポンプ 車による圧送,バイブレータによる締固めなど機械化さ れた施工方法などは,その時代の社会情勢のもと変遷し てきた。劣化した実構造物の維持管理において施工年の 異なる実構造物のコンクリートの性質を詳細に評価し, 材料の品質,施工の優劣等の情報を把握したうえで,劣 化予測や補修,補強対策の検討をすることは,より適切 な維持管理をするためにも極めて有効であると考える。 本研究では,昭和2年(1927年)に竣工し,昭和25年 (1950年),昭和39年(1964年),昭和57年(1982年) に増改築された鉄道高架橋からのコア供試体を対象とし た。コンクリート構造物の劣化は,材料的特性,施工の 優劣や立地環境条件に影響を受け,進行していくものと されている。対象構造物は,同環境条件下にあることか ら,施工年の異なるコンクリートを詳細に比較検討する ことで,建設時代の違いによる材料,施工的な特性を見 出す一助になると考え,主に圧縮強度,静弾性係数,中 性化深さおよび細孔径分布に着目して考察した。

2. 実験概要

2.1 対象構造物

対象構造物は、東京 23 区内の市街地で塩害等の劣化 環境下ではない一般環境下に立地し、近接する鉄道の輸 送力増強に伴い、昭和2年、25年、39年および57年の 4 期にわたって、大規模な増改築がなされた。橋梁形式 は3~4径間連続 RC ラーメン高架橋であり、一部の範囲 において、耐震補強を目的とした柱の鋼板補強とかぶり コンクリートのはく離・はく落に対する吹付けモルタル 補修がなされていた²⁾。

2.2 コア供試体の採取概要

コア供試体の採取方法は、JIS A1107「コンクリートからのコア採取方法及び圧縮強度試験方法」に準拠して実施し、削孔径(コア直径)は、約 φ 80mm とした。コア供試体の採取箇所は、高架橋 6 径間の範囲内において柱、梁および中間スラブの 3 部材より採取した。柱においては、GL より 1m 程度の高さの位置とし、梁ではスパン中央付近の側面で底面より 100~300mm 高さの位置より採

*1 東急建設株式会社 技術研究所 土木研究室 工修(正会員)
*2 東急建設株式会社 技術研究所 土木研究室 博士(工学)(正会員)
*3 東京急行電鉄株式会社 鉄道事業本部 工務部 土木課

(a) 昭和2年施工箇所より採取

(b) 昭和 57 年施工箇所より採取 図-1 採取したコア供試体の状況

取した。中間スラブでは、ひび割れやエフロレッセンス 等の発生していない箇所を選定し、底面より深さ方向で 150~300mmの長さのコア供試体を採取した。採取本数 は、各施工年の柱、梁および中間スラブの3部材より3 本ずつとし、合計36本とした。コア採取においては、基 本的に吹付けモルタル補修が施されていない箇所を対象 としているが、やむを得ず、補修部分を含むコア供試体 の場合、関係する評価項目において除外した。なお、採 取したコア供試体の外観を目視にて観察したが、ひび割 れ等は確認されなかった。

2.3 評価項目と方法

評価項目は,主に実構造物を維持管理していくうえで, 基本的な情報となる圧縮強度および静弾性係数と対象構 造物の劣化要因である中性化と中性化に影響を及ぼす細 孔径分布とした。

(1) 圧縮強度·静弾性係数

圧縮強度試験は,JIS A 1107 に準拠した。コア供試体 は、表層から中性化している範囲と吹付けモルタルの補 修部分を除外,切断し、コア供試体内部を試験に用いた。 静弾性係数は供試体に縦方向に貼り付けたひずみゲージ により測定した。

(2) 配合推定

セメント協会法(F-18) および NDIS 3422「グルコン 酸ナトリウムによる硬化コンクリートの単位セメント量 試験方法」に基づき、コア供試体を微粉砕した試料を用 いて、各施工年のコンクリートの配合を推定した。なお、 昭和57年に施工された箇所より採取したコア供試体は、 石灰岩を含んでいることから NDIS 3422 による配合推定 のみを実施した。NDIS 3422 による配合推定では、セメ ント量のみの算出となるため、骨材量は既往の研究³⁾を 参考にし、水量に関しては F-18 に準じて算出した。配合 推定の試料は、各施工年の梁より採取したコア供試体 1 本ずつとし、圧縮強度試験後の供試体を用いた。

(3) 粗骨材容積および比表面積

実構造物より採取したコア供試体の圧縮強度と静弾性 係数は、それぞれのコア供試体中の粗骨材が占める割合 に影響を受けると考え、コア供試体に占める粗骨材の容 積および表面積を求めた。粗骨材の採取方法は、ギ酸を 用いて再生粗骨材より原粗骨材を回収する方法 かを参考 に実施した。試料は、圧縮強度試験後のコア供試体を粉 砕し、2.5mm ふるいにとどまる試験片を用いた。その後、 試験片を 20%ギ酸水溶液に1 週間浸漬し、骨材周辺のセ メントペーストを溶解させた。溶解後、2.5mm ふるいに とどまる試料を粗骨材とみなした。

粉砕前のコア供試体と回収した粗骨材の水中質量お よび表乾質量を測定して、コア供試体に占める粗骨材の 容積比を求めた。粗骨材の比表面積Sは、友澤らの研究 ⁵に準じて式(1)により算出した。

$$S = \frac{f}{kD_p}$$
(1)

ここで, f, k: 粗骨材の形状により定まる定数, D_p: 投 影面積径(mm)式(2)より算出

$$D_p = \left(\frac{2nm^2}{m^2+1}\right)^{\frac{1}{2}} \times D_0 \tag{2}$$

ここで, *n*, *m*: 粗骨材の形状により定める定数, *D*₀: ふるい目開き(mm)

また,式(1)における f, k は,川砂利の場合 flk=6.5 程 度であるとの報告^のがなされていることから flk=6.5 とし, n, m は,回収した粗骨材(試料重量:1.5kg 程度)のふ るいわけ試験を行い各ふるいにとどまる骨材から任意の 試料を取り出し,厚み,短辺,長辺を測定して求めた。 そして,コア供試体に占める粗骨材の容積比に式(1)より 算出した粗骨材の比表面積を乗じて,コンクリートに占 める粗骨材表面積とした。なお,試験には川砂利を使用 している昭和2年,昭和25年および昭和39年のコア供 試体を対象として,昭和25年では,吹付けモルタル補修が 施されている箇所を除外し,柱より採取したコア供試体 2本を試験に用いた。

(4) 中性化深さ

コア供試体の側面にフェノールフタレイン 1%エタノ ール溶液を噴霧し,JIS A 1152 に準じて非変色深さを測 定した。なお,吹付けモルタル補修がなされている範囲 から採取したコア供試体は除外した。

(5) 細孔構造

コア供試体の表層から 10mm 程度の中性化した範囲 (以後,中性化域と称す)とコア供試体内部の未中性化 域で10mm幅に切断したものを数mm角に割裂して試料 とした。その後,試料をアセトンに浸漬して水分を除去 し,真空乾燥器中で脱気・乾燥させ,水銀圧入法により 細孔径分布を測定した。表層の中性化域を対象とした分 析では、昭和2年、39年、57年の3部材において1本ず つを、昭和25年では柱より採取したコア供試体2本を 分析に用いた。内部の未中性化域では、昭和2年、39年、 57年で梁より採取したコア供試体を、昭和25年で柱よ り採取したコア供試体の1本ずつを分析に用いた。

試験結果および考察

3.1 配合推定

表-1に配合推定の結果を示す。配合推定の結果より 水セメント比は 51~61%の範囲であり、単位水量は 118 ~192kg/m³であった。施工年に着目すると、昭和 25 年の コア供試体では骨材量が 2000kg/m³以上と大きく、昭和 2 年のコア供試体では、水セメント比が 59%、61%と他 の供試体と比較して若干大きい結果となった。試験方法 の違いでは、NDIS 3422 による配合推定では、単位水量 が大きくなる結果となったが、水セメント比は 5%以内 の差となり、比較的良く評価されているものと考える。 3.2 圧縮強度、静弾性係数および粗骨材表面積

図-2 に圧縮強度と静弾性係数の関係を示す。図中に は土木学会コンクリート標準示方書⁷および JASS5⁸⁾の 算出式をあわせて示している。実構造物より採取したコ ア供試体の圧縮強度と静弾性係数の関係は,算出式より も全体的に小さい値を示した。その中でも,昭和2年で は,他年代と比較して特に小さくなる結果を含んだ。

図-3 に圧縮強度と圧縮強度時のひずみの関係を示す。 図中には、圧縮強度と圧縮強度時のひずみの関係式 ⁹と して、Shah 式(3)、六車式(4)、Popovics 式(5)、村上式(6) をあわせて示している。圧縮強度時ひずみは、0.1~0.4% の範囲に分布していた。

Shah \vec{x} $\varepsilon_m = 0.195 + 14.9 \times 10^{-4} \sigma_B$ (3)

六車式 $\epsilon_m = 0.130 + 13.3 \times 10^{-4} \sigma_B$ (4)

Popovics
$$\vec{\asymp}$$
 $\varepsilon_m = 767 \cdot \sqrt[4]{\sigma_B} \times 10^{-4}$ (5)

村上式
$$\varepsilon_m = \frac{\sigma_B \times 10^{-1}}{E_c(1-1/n)}$$
 (6)
 $n = exp(0.0256 \cdot \sigma_B)$

ここで、 ε_m : 圧縮強度時ひずみ(%)、 σ_B : 圧縮強度 (N/mm²)、 E_c : 静弾性係数(kN/mm^2)、n: 実験定数

既往の研究 ^{9,10}によると実構造物より採取したコア供 試体の圧縮強度と静弾性係数の関係は,算出式よりも全 体的に小さくなる場合もあることが報告されている。そ こでは,水セメント比が大きいコンクリートの場合,ブ

表-1 配合推定の結果

ポエケ	試験	W/C	単位量(kg/m ³)			
旭上平	方法	(%)	水	セメント	骨材*	
四手った	F-18	59	153	259	1921	
昭和2年	NDIS	61	179	292	1874	
III 千日 25 年日	F-18	52	118	225	2042	
昭和 25 平	NDIS	56	139	249	2004	
WIE 20 /	F-18	58	176	303	1820	
昭和 39 年	NDIS	53	192	360	1775	
昭和 57 年	NDIS	51	149	290	1926	

※表乾状態の単位量

図-3 圧縮強度と圧縮強度時ひずみの関係

リーディングによりモルタルと骨材界面に空隙ができる ことで静弾性係数が小さくなることや長期間供用されて いることでコア供試体が完全な乾試験であることなどが 影響しているものと考えられている。図-2より土木学 会コンクリート標準示方書および JASS5 の算出式から求 まる静弾性係数より実験値の静弾性係数が小さくなった 昭和2年,昭和39年および昭和57年では,図-3の圧 縮強度と圧縮強度時のひずみの関係において、村上式お よび Shah 式に近い傾向を示した。村上式¹¹⁾は,80N/mm² 以上の高強度コンクリートの圧縮強度における圧縮軟化 域での実験値と Popovics 式による計算値との適合性を高 めるために実験定数を求めている。比較的強度の低い圧 縮強度と静弾性係数の関係に着目して提案されているも のではないが、骨材界面に生じる脆弱な空隙部分が存在 することなどで圧縮強度における剛性が低くなり、ひず みが大きくなることを表せられていると考える。

図-4 に粗骨材表面積と圧縮強度および静弾性係数の

図-5 粗骨材表面積と静弾性係数比の関係

関係を、図-5に土木学会コンクリート標準示方書の算 出式より求まる静弾性係数の計算値に対する実験値の比 を示す。径の大きな粗骨材がコア供試体中に多く占める 場合に粗骨材表面積は小さく,径が小さな骨材が多く占 める場合に粗骨材表面積は大きくなる。昭和2年のコア 供試体では,昭和25年および昭和39年のものよりも径 が大きな骨材が多く占める傾向となった。なお,ふるい わけ試験より各施工年の粗骨材の粗粒率は,昭和2年で 6.88,昭和25年で6.38,昭和39年で6.43であった。

図-4,図-5より粗骨材表面積が小さくなると圧縮強 度と静弾性係数は小さくなる傾向を示した。骨材径の大 きな粗骨材を多く含む場合は,圧縮強度と静弾性係数が 小さくなることが示されており,昭和2年のコア供試体 の中で圧縮強度と静弾性係数の関係が小さくなったもの を含んだ要因のひとつとして,径の大きな粗骨材の占め る割合が大きいことが考えられる。ただし,粗骨材表面 積と圧縮強度および静弾性係数の関係は,一律の関係式 に表せるものとはなっておらず,粗骨材が占める割合の 影響だけではなく,乾試験であることや長期間供用中に 継続荷重を受けていること,粗骨材自体の物性,細孔構 造などの他要因も含めて複合的に整理する必要があると 考える。

3.3 中性化深さ

表-2,図-6に中性化深さの測定結果を示す。昭和2 年のコア供試体では、雨掛りがあり水分の影響を受ける 箇所の中性化深さの結果を含むとバラツキが大きくなる が、水分の影響を受けない中性化深さのみに着目すると

表-2 中性化深さの測定結果

	竣工 年	調査 年	調査 数	中	変動		
				最大	最小	平均	係数
	昭和	平成 26 年	7 (8)	71.4 (71.4)	43.9 (38.2)	56.2 (54.0)	0.18 (0.21)
	2年	昭和 57 年	6 (7)	65.0 (65.0)	45.0 (22.5)	54.6 (50.0)	0.16 (0.28)
-	昭和 25 年	平成 26 年	3	52.8	38.0	45.9	0.13
	昭和 39 年	平成 26 年	7 (9)	37.4 (37.4)	27.3 (27.3)	32.4 (32.4)	0.13 (0.12)
	昭和 57 年	平成 26 年	9	37.2	20.7	28.6	0.22

()内:水分の影響がある箇所の結果を含む

変動係数は、0.13~0.22 であり、施工年の違いによるバ ラツキは少ないものと考える。図-6 には土木学会コン クリート標準示方書における中性化予測式による算出結 果をあわせて示す。算出にあたっては、普通ポルトラン ドセメントで、W/C=50%、60%とした場合の乾燥しやす い環境(βe=1.6)における中性化深さの経年変化を求め た。なお、昭和2年に施工した箇所については、過去の 調査(昭和57年)におけるコア供試体およびはつり法に より得られた中性化深さの結果もあわせて示す。

配合推定の結果より、水セメント比は 50~60%程度と 推測されたが、中性化深さは予測式による W/C が 50~ 60%計算値の範囲よりも全体的に大きい傾向を示し、昭 和 39 年と昭和 57 年は W/C=60%の予測値を中心に分布 している。それに対して、昭和 2 年については、他のも のよりも中性化深さが大きくなった。また、水分の影響 が受ける箇所では、調査数が少ないものの水分の影響の ない箇所よりも小さくなる傾向を示した。水分の影響に ついては、松田らの報告¹²⁾と同様な傾向となり、実構造 物では、外部環境としてコンクリート表面の乾燥、湿潤 状態が中性化進行に影響を及ぼすことが示されている。

3.4 細孔構造

図-7 に各施工年柱のコア供試体表層で中性化域での 細孔径分布を,図-8 に昭和57 年梁の中性化域と未中性 化域の細孔径分布を示す。図-7 より細孔径分布の特徴 として,昭和25 年柱のコア供試体では,細孔径1~10 µ m の範囲の細孔量が多くなる傾向を示した。昭和39 年 柱のコア供試体では,細孔径1~10 µ m の範囲よりも細

孔径 0.01~0.5 μm の範囲の細孔量が多くなり、コア供試体ごとに異なる細孔径分布となった。

図-8 よりコア供試体の中性化域と未中性化域の細孔 径分布に着目すると、未中性化域の細孔径分布では、細 孔径 0.005~0.01 μ m の範囲において細孔量が多いのに 対して、中性化域では、細孔径 0.01~0.1 μ m の範囲の細 孔量が多くなった。これは、その他の昭和2年、昭和25 年および昭和 39 年のコア供試体の中性化域と未中性化 域においても同様の傾向を示しており、表層部分は中性 化することで細孔径 0.005~0.01 μ m の範囲の細孔が細 孔径 0.01~0.1 μ m の範囲に移行したものと考えられる。 セメント協会セメント化学専門委員会¹³では、0.003~ 0.006 μ m の細孔量が中性化域で著しく減少することを 報告しており、この細孔径は C-S-H 内部に存在するゲル 空隙に相当すると考えられており、中性化により C-S-H が分解したことを示唆している。

図-7 より細孔径 1~10µm の範囲の細孔量が多くな るものと,細孔径 0.01~0.5µm の範囲の細孔量が多くな るものに分類できることから,細孔径 0.5µm 以上の細 孔量の総和が、圧縮強度、静弾性係数および中性化速度 係数に影響を及ぼすものと考えた。そこで、細孔径 0.5μ m以上の細孔量の総和を有効細孔量(>0.5μm)とした 場合の細孔量と圧縮強度、静弾性係数および中性化速度 のそれぞれの関係を整理した。

図-9に細孔量(総細孔量,有効細孔量)と圧縮強度, 静弾性係数および中性化速度係数の関係を示す。昭和2 年の総細孔量と有効細孔量(>0.5µm)に着目すると, 他の施工年のものよりも昭和2年の細孔量のほうが大き くなり,圧縮強度および静弾性係数は小さくなった。さ らに,総細孔量と有効細孔量(>0.5µm)を比較すると 細孔量と静弾性係数の関係において,総細孔量と静弾性 係数の決定係数 R²が 0.83 であるのに対し,有効細孔量 (>0.5µm)では 0.99 となり,総細孔量より相関性が高 くなった。これは,3.2 節で前述した圧縮強度と静弾性係 数の関係が小さくなる一因として,コア供試体に占める 粗骨材の割合のほかに,コンクリートの細孔構造も影響 することが示されており,特に細孔径 0.5µm 以上の比 較的大きな細孔径が圧縮強度および静弾性係数の力学的 特性に影響を及ぼすものと考える。なお、細孔径 0.5μ m 以下の細孔量の総和を有効細孔量 ($\leq 0.5 \mu$ m) とした場 合では、細孔量と圧縮強度および静弾性係数の関係に相 関性はみられなかった。

細孔量と中性化速度係数の関係は、総細孔量と有効細 孔量(>0.5 μm)が大きくなると中性化速度係数が大き くなる傾向を示した。ただし、未中性化域の有効細孔量 (>0.5µm)に着目すると、細孔量と中性化速度係数の 相関性は、細孔量と圧縮強度、静弾性係数との関係より も低いものであった。水セメント比が大きくなると細孔 量も大きくなり中性化速度係数に影響を及ぼすと推測さ れるが、一概に中性化速度係数は、コンクリートの細孔 構造のみで整理できるものではないと考えられる。図-8の中性化域と未中性化域の細孔径分布の変化から C-S-Hの分解が示唆されていること, また, 図-9 より, 中 性化域の総細孔量は未中性化域の総細孔量よりも少なく なっている。これは、中性化の進行に伴い Ca(OH)2から CaCO3が生成され、緻密化したものと考える。つまり、 長期間供用している構造物においては、CaCO3の生成に よる緻密化とC-S-Hの分解による粗大化を伴いつつ細孔 構造が変化し、中性化が進行していくものと考えられる。 これらの細孔構造の変化には、構築直後の初期材齢にお ける C-S-H や Ca(OH)2 など水和生成物の生成量や中性化 の劣化過程における Ca(OH)2の消費, C-S-H の分解速度 の違いが影響を及ぼすものと考えられ、中性化の進行に おいては、それらも考慮して整理する必要があると考え られる。上記の要因を含め整理することで、中性化の進 行における施工年の違いが及ぼす影響を見出せるものと 考える。また、コア供試体の表層では中性化により細孔 構造が変化していることだけではなく、表層と内部では 養生,環境条件によって初期の細孔構造が異なっている ことも考慮して整理しなければならず、今後、それらを 包括する指標を用いて検討が必要であると考える。

4. まとめ

本研究の範囲内で対象構造物から採取したコア供試 体より得られた知見を以下に示す。

- (1) 圧縮強度と静弾性係数の関係は,施工年によらず土 木学会コンクリート標準示方書および JASS5 の算出 式よりも全体的に小さくなる傾向を示した。
- (2) 昭和2年のコア供試体は、他施工年のコア供試体より大きな径の粗骨材が占める割合が高く、圧縮強度と静弾性係数が小さくなる結果を含んだ。
- (3) 圧縮強度と静弾性係数が小さくなった昭和 2 年のコ ア供試体は、総細孔量と有効細孔量(>0.5 μ m)が他 の施工年よりも大きくなった。
- (4) 総細孔量と有効細孔量 (>0.5 µm) が大きくなると圧

縮強度および静弾性係数は小さくなった。特に細孔 径 0.5 μ m 以上の細孔径が圧縮強度および静弾性係数 の力学的特性に影響を及ぼすものと考えられた。

(5) 細孔量と中性化速度係数の関係は,総細孔量と有効 細孔量(>0.5µm)が大きくなると中性化速度係数が 大きくなる傾向を示した。

参考文献

- 国土交通省:国土交通省インフラ長寿命化計画(行 動計画)平成 26 年度~平成 32 年度, 2014
- 2) 峰松敏和,瀬野康弘,大橋潤一,住田裕紀:鉄道高 架橋における吹付けモルタルによる補修工事と追 跡調査,コンクリート工学年次論文集, Vol.21, No.2, pp.229-234, 1999
- 3) 須藤絵美,中田善久,笠井芳夫:硬化コンクリートの単位水量試験方法に関する検討,日本建築学会大会学術講演梗概集,2009
- 小川智彦,溝本優介,栗原哲彦:ギ酸溶解にて回収 された再生粗骨材の複数回利用,土木学会第68回 年次学術講演会,V-311, pp.621-622, 2012
- 5) 呉相均,兼松学,野口貴文,友澤史紀:余剰モルタ ル膜厚によるコンクリートのレオロジー特性評価, 日本建築学会大会学術講演梗概集,1998
- 加藤順吉:コンクリートの配合とワーカビリチーの
 関係および関連問題について、セメント技術年報、
 1965
- 7) 公益社団法人土木学会:2012年制定コンクリート標準示方書[設計編],2012
- 8) 社団法人日本建築学会:建築工事標準仕様書・同解 説5鉄筋コンクリート工事,2009
- 9) 荒木秀夫,八十島章:既存建物の低強度コンクリートの力学特性,日本建築学会技術報告集,第16巻, 第32号, pp.11-16,2010
- 10) 独立行政法人土木研究所:土木研究所資料,既存コ ンクリート構造物の健全度実態調査結果-1999 年調 査結果-, 2002.3
- 村上聖:鉄筋コンクリート梁の終局せん断強度算定 式に関する一考察,日本建築学会構造系論文集, No.533, pp.143-150, 2000
- 12) 松田芳範,上田洋,石田哲也,岸利治:実構造物調 査に基づく中性化に与えるセメントおよび水分の 影響,コンクリート工学年次論文集, Vol.32, No.1, pp.629-634, 2010
- 社団法人セメント協会セメント化学専門委員会:セメント硬化体の炭酸化,セメント・コンクリート, No.574, pp.26-32, 1994