論文 常温環境におけるフライアッシュ混合セメントの複合水和発熱モデ ルの高度化検討

木ノ村 幸士*1・石田 哲也*2

要旨:混合セメントの複合水和発熱モデルの検証は、これまでデータの信頼性や有用性から、材料総体の断 熱温度上昇量を主な指標として検討が重ねられてきた。一方、近年では分析評価手法の進歩により、混和材 の反応進展に関わる直接的な評価が可能となってきた。そこで、本論では、フライアッシュ混合セメントを 対象にフライアッシュの反応率を指標とした検証解析を実施し、現行モデルの課題を明らかにするとともに、 水結合材比や置換率、比表面積の違いによるポゾラン反応進展への影響をより直接的に考慮した高度化モデ ルを提案した。その結果、常温環境におけるフライアッシュ混合セメントの解析精度が大幅に向上した。 キーワード:フライアッシュ、複合水和発熱モデル、反応率、水結合材比、置換率、比表面積

1. はじめに

フライアッシュ(以下「FA」)を混和材として用いた 場合,水和発熱やアルカリシリカ反応の抑制,長期強度 の増進,遮塩性や化学抵抗性の向上効果などの利点がよ く知られるが,中性化抵抗性の低下や養生期間確保への 懸念,FAの品質変動や安定供給などが利用拡大の妨げと なっており,我が国におけるコンクリート用混和材とし ての利用率は発生灰全体のわずか2%に留まっている¹⁾。

一方で,石炭は世界各地に賦存する廉価なエネルギー 源であり,今後新興国において益々の需要増加が見込ま れる。FAの有効利用は持続可能社会を形成する上で重要 な社会的課題であるといえるが,近年では,セメント産 業に関わるCO₂排出抑制の観点からも環境負荷低減材と して利用促進が推奨され,全国各地で積極的に利用する 動きが広がりつつある^{2),3),4)}。今後,FAを混合したセメ ントの長期性能を材料や使用条件に応じて高精度に予測 することができれば,設計段階での性能照査にも活用で き,さらなる利用拡大が期待できよう。

岸らは、これまで種々のポルトランドセメントおよび 混合セメントにも適用可能な複合水和発熱モデルの開発 を進めてきた^{5),6),7)}。同モデルは、セメントクリンカー鉱 物やその他混和材の水和過程を個別に記述したモデルで 構成され、反応間の相互依存性を考慮しつつ鉱物組成比 に応じて個々の反応を足し合わせることにより、任意の 温度履歴における材料総体の水和発熱過程を表現するこ とができる。水和発熱過程の評価には、これまでデータ の信頼性やひび割れ発生予測への有用性などを勘案し、 材料総体の断熱温度上昇量が主な検証指標として用いら れ、混合セメントに関するモデルの検証についても主に 同指標が用いられてきた。一方、近年では、XRD/Rietveld 解析による相組成の定量評価手法⁸⁾や選択溶解法を用い た反応速度の定量評価手法⁹⁾など分析評価手法の著しい 進歩により,混和材の反応進展に関わる直接的な評価が 可能となってきており,FA反応率などを実測した事例が 複数報告されている¹⁰⁾⁻¹⁵⁾。

そこで、本論ではまず、FA 混合セメントを対象に FA 反応率を指標として現行の複合水和発熱モデルを用いた 検証解析を実施し、現行モデルの課題を明らかにした。 続いて、現行モデルをベースに、水結合材比や FA 置換 率,比表面積の違いによるポゾラン反応進展への影響を より直接的に考慮した高度化モデルを提案した。現行モ デルでは,FAの水和発熱速度の減少程度を表す低減係数 β_{fa}を,自由水量と内部生成層厚の比の関数として表現し ていたのに対し, 高度化モデルでは, 自由水量の項およ び内部生成層厚の項に分離し、後者を FA 置換率に依存 する関数として表現する形に修正した。その結果、配合 や物性の違いに応じて緩慢に継続する FA 反応の特徴を より忠実に再現することが可能となり, FA 混合セメント の解析精度が大幅に向上した。なお、本論は常温環境に おける反応モデルの検証を範疇としており、異なる温度 環境への適用拡大については今後検討を進める。

2. 複合水和発熱モデルの概要

本章では, FA 混合セメント中の FA 水和反応について, 現行の複合水和発熱モデルにおける取り扱いを概説する。 2.1 一般式と FA の基準発熱速度

内部温度 Tにおける FA の発熱速度 H_{fa} は,基準発熱速 度 $H_{fa,T0}(Q_{fa})$ と温度活性- E_{fa}/R の材料特性値をもとに,自 由水量,ポゾラン反応の刺激剤である $Ca(OH)_2$ 量, FA の 比表面積による各要因を考慮した式(1)により表される⁷⁾。

$$H_{fa} = \min(\beta_{fa}, \lambda_{fa}) \cdot H_{fa, T_0}(Q_{fa}) \exp\left\{-\frac{E_{fa}}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right\}$$
(1)

*1 大成建設(株) 技術センター土木技術研究所土木構工法研究室 工修 (正会員)

*2 東京大学大学院 工学系研究科社会基盤学専攻 教授 博士(工学)(正会員)

ここで、β_{fa}は自由水の減少による発熱速度の低減を表 す係数,λ_aは液相中の Ca(OH)2 量に依存した発熱速度の 変化を表す係数, H_{fa,T0}は基準温度 T₀(=293K) における FAの基準発熱速度で積算発熱量 Q_{fa}の関数であり,正規 化した FA の比表面積で補正した係数, Efa は FA の活性 化エネルギー, R は気体定数であり, -E_{fa}/R をもって温度 活性とする。FAの基準発熱速度の設定を図-1に示す。 本設定は、FA の反応は非常に緩慢で反応全般にわたり FA 中のガラス相の溶出速度が律速していると考え,基準 発熱速度は未反応粒子の表面積に応じて減少するモデル が適当であるとの考えに基づくものであり⁶, クリンカ 一鉱物と比較して非常に小さな値である。また、温度活 性については, FA の反応速度は高温下で大幅に活性化さ れるとの知見¹²⁾から, 12,000[K]という大きな値を設定し ている⁷⁾。なお,これらの設定はともに,FA 単体の値を 実験的に同定することは困難であることから,FA 混合セ メントの断熱温度上昇試験結果に対し、逆解析的に妥当 な値を設定したものである。

2.2 構成要素間の反応相互依存性

式(1)より FA の発熱速度は、温度による反応の活性化 影響を除けば、 β_{fa} および λ_{fa} が支配的な因子となる。

 β_{fa} の評価式は以下で表される。

$$\beta_{fa} = 1 - \exp\left\{-r\left\{\left(\frac{w_{free}}{100 \cdot \eta_{fa}}\right) \middle/ S_{fa}^{\frac{1}{2}}\right\}^{s}\right\}$$
(2)

$$w_{free} = \frac{w_{total} - \sum w_i}{C}$$
(3)

$$\eta_{fa} = 1 - \left(\frac{Q_{fa}}{Q_{fa,\infty}}\right)^{\frac{1}{3}}$$
(4)

ここで、w_{free} は正規化された自由水量、w_{total} は初期単 位水量、w_iは各鉱物の反応により消費・固定された水量、 C は単位セメント量である。自由水量は水和の継続に必 要な水量であると同時に水和生成物の析出可能空間量を 意味する。η_{fa} は正規化された FA の内部反応生成層厚、 S_{fa} は正規化された FA の比表面積比、r、s は材料定数で ある。式(2)において、自由水量が減少しかつ未反応 FA が厚い内部生成層で覆われると、著しく反応が停滞する。 一方、λ_aの評価式は以下で表される。

$$\lambda_{fa} = 1 - \exp\left\{-2.0 \cdot \left(\frac{F_{CH}}{R_{SGCH} + R_{FACH} + R_{SFCH}}\right)^{1.5}\right\}$$
(5)

ここで、 F_{CH} は残存する Ca(OH)₂ 量、 R_i は Ca(OH)₂が 十分に存在する場合にそれぞれ高炉スラグ、FA、シリカ フュームの反応に必要となる Ca(OH)₂量である。混和材 が FA のみの場合には、 R_i は R_{FACH} のみで構成される。式 (5)において、ポゾラン反応の進展に伴い反応刺激剤であ る Ca(OH)₂が不足すると、FA の反応が著しく停滞する。

3. 現行モデルを用いた FA 反応率の検証 3.1 解析値と実測値の比較

FA 混合セメントを対象に,FA の反応率を検証指標と して現行の複合水和発熱モデルを用いた比較解析を実施 した。検証に用いた測定事例を表-1 に,比較結果を図 -2 に示す。測定事例はいずれも OPC を FA 置換したペ ーストである。解析での FA 反応率の定義は以下である。

$$\alpha_{fa} = Q_{fa} / Q_{fa,\infty} \tag{6}$$

図-2の[A]より,解析値は実測値に比べFAの反応が 過大であることが確認できる。特に水結合材比が50%で は反応が過剰に進んでいる。[B]の実測値では,FA置換 率が小さいほど,また比表面積の大きいケースの方が, 反応率が大きくなる傾向が見られるのに対し,解析では その差が小さい。[C]の解析値では,FA置換率40%の方 が置換率20%よりもFAの反応が進んでおり,実測値と 逆の傾向を示している。また,置換率60%では材齢100 日程度から反応が完全に停滞しており,実測値が緩慢な

	水結合材比 (%)	FA 置換率 (%)	FA の比表面積 (cm ² /g)	セメントの 鉱物組成	養生条件	測定法	出典
А	30, 50	40	4000	化学組成より推定*	20℃封緘	選択溶解法	小早川(2000) ¹¹⁾
D	45.5, 38.5	10, 30	3900 (4A)**	山曲に記載なり	7日間20℃封緘後	滤扣浓碗汁	公口(2007) ¹³⁾
D	45.5, 38.5	10, 30	4240 (2B) ^{**}	山央に記載のり	20℃湿空	进扒俗胜齿	谷口(2007) 7
С	40	20, 40, 60	4060 (F20)**	出典に記載あり	20℃封緘	選択溶解法	Sakai(2005) ¹⁴⁾
D	40	20	3400, 3720 4110, 3870	出典に記載あり	20℃湿空	選択溶解法	大塚(2009)15)

表-1 モデルの検証に用いた測定事例

*出典記載の化学組成より Bogue 式を用いて推定

** () 内は出典記載の FA 種別を表す

がら継続的に増加している傾向とは異なる。また, [D] の解析値においても、実測値ほど FA の比表面積の違い が反応率の違いに現れていないことが確認できる。

3.2 現行モデルの課題分析

ここでは、現行モデルを用いた解析結果が実測値と乖離した要因について分析する。分析の一例として、事例 [C]の各解析ケースにおける支配パラメータ β_{fa} および λ_{fa} の経時変化を図-3に示す。

FA 置換率 20%と 40%を比較すると、 λ_{fa} はいずれも 1.0 であるのに対し、β_{ta}は経時的に低下しており低下度は 20%の方が大きい。これは置換率 20%の方が単位セメン ト量が多いため水和が速く、自由水の消費が進むことを 意味しており、図-2の[C]で実測値の傾向と逆転を引き 起こす要因となっている。一方, FA 置換率 60%のケー スでは、β₆は 1.0 のまま推移し、λ₆が材齢 70 日あたり から急減している。図-4 に[C]の各ケースの Ca(OH)2量 の解析値と実測値¹⁴⁾の変化の比較を示す。置換率が60% の場合,解析では材齢100日程度でCa(OH)。が完全に消 費されている。しかし、実測では材齢1年でも Ca(OH)2 が残存している。また, W/B50%, FA 置換率 60%の配合 で 40℃養生した場合でも, 材齢1年で Ca(OH),の残存が 見られるとの報告¹⁰⁾があることを考慮しても、現行の解 析モデルは、高 FA 置換率の場合に Ca(OH)。の消費を過 剰に速く評価していると考えるのが妥当である。

以上を集約すると,現行モデルの課題は以下といえる。 ・現行モデルは FA 置換率の違いを自由水の消費や鉱 物組成変化による反応速度の違いとして間接的に水 和過程に反映するため,置換率の違いによる FA 反応 の進展・停滞性状の違いを的確に表現しきれない。

- また、Ca(OH)2を完全に消費するまで反応が継続する ため、自由水が多く存在する高W/B配合や高FA置 換率配合の場合に反応が過大となる傾向がある。
- Ca(OH)₂ 量の実測値の傾向より,高 FA 置換率の場合 でもλ_aが短期間で急減するとは考え難く,λ_a以外の 要因で反応の停滞を考慮する必要がある。

4. 高度化モデルの提案

4.1 FA の反応メカニズムとイオンの移動

FA の反応は、外部からの OH イオンの刺激により FA ガラス相から溶離した SiO₄²⁻イオンが内部生成層中を FA 粒子外側に向けて移動するか、あるいは、外部供給され た Ca²⁺イオンが内側に向けて移動し、両者が反応するこ とで継続する。反応形態はやや異なるが、高炉スラグの 反応も同様のイオン拡散過程に基づくと考えられる。

Luan らは、高炉スラグを混和材に用いた場合、置換率の増加に応じて水和生成物の Ca/Si 比が低下することに着目し、反応の停滞を表現するモデルを提案している¹⁶。 Ca/Si 比の低下に応じて C-S-H の成長形態がより 2 次元 的となり内部生成層の屈曲度が増すこと、また内部生成 層の C-S-H の表面電位が正から負に変化する¹⁷⁾ことで Ca²⁺イオンが内側に引き込まれて反応し、内部生成層が より密になること、これら両要因でイオンの移動抵抗性 が増すとの考えに基づくものである。概念図を図-5 に 示す。本論でもこの考えに従い高度化モデルを提案する。 4.2 提案モデルの定式化

3.2 に示した課題を踏まえ,提案モデルでは FA 置換率 の違いを直接的に FA の反応過程に反映した新たなパラ メータを導入した。Luan らのモデルを参考に,内部生成 層厚 η_{fa} を FA 置換率の関数として表すことにより,置換 率の違いによる内部生成層のイオン移動抵抗性の大小を 代替し, η_{fa} を含む項を w_{free} と分離することで内部生成層 厚の増加に伴い直接的に水和速度が低減する形とした。 高度化モデルの提案式を以下に示す。なお,水結合材比 および比表面積の違いによる反応過程への影響は,現行 モデルと同様に w_{free} , S_{fa} で考慮している。

$$\beta_{fa} = \left\{ 1 - \exp\left\{ -r\left\{ \left(\frac{w_{free}}{10}\right) \middle/ S_{fa}^{\frac{1}{2}} \right\}^s \right\} \right\} \cdot x$$
(7)

$$x = \exp\left(-a \cdot \eta_{fa}^{b}\right) \tag{8}$$

$$a = 50 p_{fa}, \quad b = \frac{0.73}{\sqrt{p_{fa}}} - 0.23$$
 (9)

ここで、 $x \iota \eta_{fa}$ に依存する発熱速度の低減係数、a、bは FA 置換率 p_{fa} に依存する固有定数である。 η_{fa} とxの関 係を図-6に示す。bを FA 置換率の平方根の逆数で表す ことで、置換率が小さい場合ほどxの低下が著しく遅延 し、長期に渡り反応が高く継続する特徴を表現した。

5. 常温環境における提案モデルの妥当性の検証 5.1 FA 反応率

提案モデルによる FA 反応率の解析値と実測値の比較 結果を図-7に示す。なお, FA の基準発熱速度および温 度活性は現行モデルと同じ設定としている。

図一6 内部生成層厚 η_{fa} と低減係数 x の関係

同図において,解析精度の大幅な向上が概ね確認できる。[C]では,現行モデルで見られたFA置換率20%と40%間の実測値との逆転傾向が解消され,60%でも継続的な反応を再現できている。一方,[B],[D]では,比表面積の違いによる影響が十分に反映できていない。その要因として,FAの基準発熱速度が非常に小さいため,比表面積の違いによる材料総体の温度上昇の差が小さく反応過程がほぼ同じであることが挙げられる。この点については、FAの初期基準発熱速度Q_{fa.0}をやや大きく設定することで材齢初期に見られる実測値との乖離と合わせ改善できるのではないかと考えている。詳しくは6章に示す。

5.2 Ca(OH)2量

図-8に提案モデルを用いた事例[C]の Ca(OH)2量の比較を示す。実測値に比べ初期の絶対値がやや大きいが、 置換率 60%でも Ca(OH)2 が急激に消費されることなく、 実測値と同様の勾配で減少している様子が確認できる。

5.3 断熱温度上昇量

現行モデルでは**表**-2 に示す配合の断熱温度上昇試験 結果を良好に再現できることが確認されている⁷⁾。そこ で,提案モデルを用いて同様の解析を行い,モデル間の 比較を行った。結果を図-9 に示す。提案モデルは,現 行モデルに比べ FA 反応率が抑制されるため断熱温度上 昇量は小さくなるが,基準発熱速度がセメントクリンカ ーに比べ著しく小さいため,その差は軽微であった。た だし,FA の反応は温度依存性が大きいことを考慮すると, より高温環境の場合には反応率の抑制による違いが断熱 温度上昇量の差に現れる可能性が高いと考えられる。

6. 今後の課題

本論では常温環境を対象に提案モデルの検証を行った。 今後,異なる温度環境下でも本モデルの適用妥当性を検 証し,モデルの最適化を図る予定である。また,FAのガ ラス化率を考慮したモデルへの拡張も今後の課題である。

図-10は、40℃環境でのFA反応率について、現高度 化モデルと実測値¹¹⁾を比較した結果である。定性的な傾 向は類似しているが、反応率を過大に評価しており、現 在の温度活性の設定が過大である可能性が示唆される。 そこで、今後モデルの最適化を図る上で考慮すべき修正 の方向性を図-11 に整理した。

現行モデルでは 20℃以外の打込み温度でも断熱温度 上昇試験結果の再現性が確認されている⁷⁾。一方,提案 モデルでは FA 反応率の停滞が再現されること,また, 実測値の温度依存性を再現するには現在の温度活性を低 く見直す必要があると考えられることから,現行モデル と同等の断熱温度上昇量を得るには基準発熱曲線を上げ る必要がある。具体的には 5.1 で述べたように FA の初期 基準発熱速度 $Q_{fa,0}$ の設定を見直すことにより最適な修正 が図れるのではないかと考えている。

なお、今後の修正に伴う本提案モデルへの影響である が、温度活性を変更しても解析結果の定性的な傾向は変 わらないこと、また、基準発熱曲線の変更に対しても式 (7)~(9)の定数等の修正により対応できる見通しを得て おり、抜本的な変更は生じないことを付記しておく。

7. まとめ

本論では、FA 混合セメントを対象に複合水和発熱モデ

	断熱温度.	昇試験の配合 ′′	(打込み温度 205	C
--	-------	-----------	------------	---

Tumos	W/B	Unit weight (kg/m ³))	Ad	
Types	(%)	W	С	FA	S	G	(C×%)
FA400	39.3	157	320	80	639	1129	0.25
FA300	49.3	148	240	60	749	1129	0.25
FA200	78.5	157	160	40	852	1089	0.25
FA15	49.0	147	255	45	823	1041	0.75
FA30	49.0	147	210	90	806	1041	0.75
FA45	49.0	147	165	135	789	1041	0.75

₹

図-10 40℃環境での FA 反応率の解析値と実測値¹¹⁾ の比較(提案モデル,温度活性 12,000[K])

図-11 考慮すべきモデル修正の方向性

ルの高度化検討を行い,常温環境において提案モデルの 妥当性を検証した。得られた成果と課題をまとめる。

- 提案モデルでは、自由水量の項および内部生成層厚 の項に分離し、後者を FA 置換率の関数として表現 することにより、配合や物性の違いに応じて緩慢に 継続する FA 反応の特徴をより忠実に再現できた。
- 2) 上記再現性の向上により,FA置換率が高い場合でも Ca(OH)₂が急激に消費されることなく、実測値と同様に漸減する傾向を再現できるようになった。
- 一方で、FAの比表面積の違いによる反応への影響は 十分に再現できておらず、今後の課題である。
- 4) 今後,常温以外の温度環境下でも本モデルの適用妥当性を検証し,FAの温度活性や基準発熱速度を見直すことにより、モデルの最適化を図る予定である。

参考文献

- 石炭エネルギーセンター:石炭灰全国実施調査報告
 書(平成24年度実績),2013
- 東北電力:「フライアッシュ混合コンクリートの標準仕様」の概要について(能代火力発電所の取り組み),東北電力プレスリリース,2010.10
- 北陸地方におけるコンクリートへのフライアッシュの有効利用促進検討委員会:北陸地方におけるフライアッシュコンクリートの配合・製造および施工マニュアル(案),2013.6

- 砂川勇二:沖縄県におけるフライアッシュコンクリートの利用促進について、コンクリート工学、Vol.52, No.5, pp.454-458, 2014.5
- 5) 岸利治,前川宏一:高炉スラグおよびフライアッシュを用いた混合セメントの複合水和発熱モデル,土 木学会論文集,No.550,V-33, pp.131-143, 1996.11
- 6) 小田部裕一:複合水和発熱モデルの一般化と水和組織形成に着目した強度発現モデルの開発,東京大学学位論文,2005.3
- K. Maekawa, T. Ishida, T. Kishi : Multi-scale modeling of structural concrete, Taylor & Francis, 2009
- Scrivener, K. et al.: Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cement and Concrete Research, Vol.34, pp.1541-1547, 2004
- 9) 土木学会:混和材料を使用したコンクリートの物性 変化と性能評価研究小委員会(333 委員会)報告書 ならびにシンポジウム講演概要集,2007.3
- 10) 小早川真,黄光律,羽原俊祐,友澤史紀:水比,混 合率および養生温度がフライアッシュのポゾラン 反応に及ぼす影響,コンクリート工学年次論文集, Vol.21, No.2, 1999.7
- 小早川真,黄光律,羽原俊祐,友澤史紀:セメント 硬化体中のフライアッシュのポゾラン反応率と各 種要因の影響,コンクリート工学年次論文集, Vol.22, No.2, 2000.7
- 12) 石川元樹,坂井悦郎,井元晴丈,大門正機:フライ アッシュを混和した低熱ポルトランドセメントの 水和と組織形成,セメント・コンクリート論文集, No.58, pp.39-45, 2004
- 13) 谷口円, 佐川孝広, 桂修:フライアッシュの反応速度に関する研究, コンクリート工学年次論文集, Vol.29, No.1, 2007.7
- E. Sakai et al.: Hydration of fly ash cement, Cement and Concrete Research, Vol.35, pp.1135-1140, 2005
- 15) 大塚拓,森慎一郎,石川元樹,坂井悦郎:フライア ッシュの鉱物組成とポゾラン反応性,セメント・コ ンクリート論文集, No.63, pp.16-21, 2009
- 16) Yao Luan et al.: Enhanced model and simulation of hydration process of blast furnace slag in blended cement, Journal of Advanced Concrete Technology, Vol.10, pp.1-13, 2012
- 17) Richardson, I.G. et al.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase, Cement and Concrete Research, Vol.24, pp.813-829, 1994