論文 統計的手法を用いた繊維補強コンクリートの繊維分布の推定

井戸 翼*1·国枝 稔*2·大竹 雄*3

要旨: FRC における繊維の分散を制御する技術は未だ確立されていないため、内部の繊維の様子を把握する ことができない。そこで、調査により離散的に得られる繊維本数から、FRC 内部の繊維本数について統計的 手法を用いて推定する手法の開発を目的とし、繊維補強コンクリートおよび繊維補強モルタルを対象として 基礎実験を行った。繊維混入率 0.5%に比べ、繊維混入率 1.0%の方が観測値によく対応した推定結果が得ら れた。また観測値を得る間隔が小さいほど、推定結果の精度が向上し、本研究の範囲内では 100mm~200mm の場合の誤差が小さく、観測値に近い値が得られた。

キーワード:繊維補強コンクリート、繊維本数、統計的手法、Kriging

1. はじめに

コンクリートが引張力に弱いという欠点を改善するた め、繊維補強コンクリート(Fiber Reinforced Concrete,以下 FRCとする)が注目され、現在に至るまで様々な使用実績 がある¹⁾。一般に短繊維はランダムに分布していると考え られているが、実際には内部において複雑な分布をして いることが可視化実験において明らかにされている²⁾。ま た、FRCにおける繊維の配向・分散を制御する技術は確立 されていない。その結果、FRC内部には繊維の本数や配向 角度に依存した不均質性が生じており、それがFRCの力 学特性に与える影響が大きいことが知られている。とり わけ硬化後に内部の様子を知ることができないという課 題がFRCの普及の足かせとなっていることは否めない。

そこで、本研究では調査により離散的に得られる FRC 内部の繊維本数から、同一部材内の任意の位置における 繊維本数を統計的に推定する手法の開発を目的として、 繊維補強コンクリートおよび繊維補強モルタルを対象 に基礎実験を行った。なお、最終的な手法の開発ではコ アによるサンプリングなどが想定されるが、本研究では 断面内の本数を対象とした。

2. 統計手法の概要

2.1 バリオグラム

本研究では繊維本数の推定に Kriging と呼ばれる地球 統計学の分野で使用されている手法を用いる³⁾。

距離 h だけ離れている 2 地点 x と x+h の観測値より, バリオグラムあるいはセミバリオグラムと呼ばれる共 分散関数を求める。バリオグラムは次式で示される。

$$\gamma(h) = \frac{1}{2} E\{Z(x+h) - Z(x)\}^{2}$$
$$= \sigma_{z}^{2}\{1 - \rho(h)\}$$
(1)
ここで、 $\gamma(h)$ はバリオグラム、 $Z(x)$ はx地点における

*1 岐阜大学 工学部社会基盤工学科 (学生会員)

*2 岐阜大学 工学部社会基盤工学科 教授 博士(工学) (正会員)

*3 新潟大学 工学部建設学科 准教授 博士(工学)

繊維本数の観測値である。

横軸に距離 h,縦軸に y(h)を取ったグラフに観測値か ら得られた y(h)をプロットするとバリオグラム雲が得ら れる。この図は距離が長くなることによって生じる観測 値の相違度を示し,距離 h がある程度大きくなるとバリ オグラムは変化せず一定になる。この関係より自己相関 距離を求める。自己相関関数は次式で表現する。

$$p(\Delta x) = exp\left[-\frac{\Delta x}{\theta}\right] \tag{2}$$

ここで, Δx は2点間の距離, θ は自己相関距離である。

2.2 Kriging

Kriging は統計的手法を用いて,ある領域内の任意の値 を,その領域内の他の値から推定する方法で,全体を測 定するには対象が広い場合に,少数の観測点から領域全 体の様子を知ることが可能な方法である。特に,地盤工 学の分野では多数の研究成果が報告されている⁴⁾。

前節に示した式(1)および式(2)より自己相関距離を求め FRC 内分の繊維本数の Kriging 予測を行う。

3. 実験概要

3.1 供試体概要

FRC 内部の繊維本数の推定にあたり繊維の混入率を 変化させたコンクリートおよびモルタルを用いた。表-1,表-2に配合の種類および配合を示す。

	えー 配合の種類					
配合	插粨	繊維混入	スランプ			
種類	1里大只	率(%)	(cm)			
А	コンクリート	0.5	21.0			
В	(自己充填型)	1.0	21.0			
С	コンクリート	0.5	5.0			
D	(有スランプ型)	1.0	5.0			
Е	モルタル	0.5	20.5			
F	(自己充填型)	1.0	23.5			

表-1 配合の種類

职入插桁	W/C s/a	s/o	a/a $Air(0/)$	W	С	S	G	Ad.	鋼繊維
配合裡類 W/C S/a		AII(%)	kg/m ³						
А	0.50	0.43	2.8	160	320	764	1030	32	39.3
В	0.50	0.43	2.8	160	320	764	1017	32	78.5
С	0.77	0.48	2.8	170	221	902	966	0	39.3
D	0.77	0.48	2.8	170	221	902	951	0	78.5
E	0.50		2.8	297	600	1240	0	0	39.3
F	0.50		2.8	297	600	1214	0	0	78 5

表-2 コンクリートおよびモルタルの配合

コンクリートは自己充填型および有スランプ型の2種 類とし、モルタルは自己充填型のみとした。表-1のコ ンクリートおよびモルタルを用いて長さ 1200 mm, 幅 200 mm, 高さ 200 mm および長さ 1200 mm, 幅 100 mm, 高さ 100 mm の 2 種類の供試体を作製した。断面 100mm×100mm のものは A~D のコンクリートのみを作 製し、計10体作製した。セメント(密度3.15g/cm³の普 通ポルトランドセメント), 粗骨材には砕石(最大寸法: 20mm, 密度: 2.59g/cm³), 細骨材には川砂(密度: 2.59g/cm³) を用いた。混和剤には AE 減水剤を用いた。なお、供試 体の呼称は配合名(A~F)と供試体寸法(200mm, 100mm) の2つから構成される。例えば、A200は配合 A を用い た 200mm×200mm 断面の供試体である。使用した繊維は 両端フック付鋼繊維とし,直径は 0.6 mm,長さ 30 mm, 密度 7.85g/cm³である。また,有スランプ型の配合では, 試料を型枠に入れた後,突き棒で締め固める程度とした。 硬化後、それぞれの供試体をコンクリートカッターによ り 50mm 間隔で切断し、断面に表れた繊維本数を目視に より測定した。切断した供試体の例を図-1に示す。

3.2. 推定方法

Kriging では任意の領域内から観測値を得る必要があ るため、図-1の切断した断面から何点か選び(観測値), それ以外の任意の断面での繊維の数を Kriging 予測によ り推定する(推定値)。具体的には、図-2に示すように 実線の観測位置の繊維本数から、点線の推定位置の繊維 本数を推定した。観測位置の間隔は 100mm, 200mm お よび 300mm の 3 種類とし、観測値と推定値を比較する (表-3参照)。

4. 実験結果

4.1 実際の繊維分布(観測結果)

図-3, 表-4 に断面 200 mm×200 mmの供試体の切断面 の繊維本数の推移および平均,標準偏差,変動係数を示 す。また,図-5 に式(1)および式(2)によって得られる A200 の Case100 におけるバリオグラムおよび自己相関 関数を示す。

図-4, 表-5 に断面 100 mm×100 mmの供試体の切断面 の繊維本数の推移および平均,標準偏差,変動係数を示 す。

図-1 切断した供試体

図-2 推定位置と観測位置

表一3 各	· Case	の観測位置	と推定(位置(網掛け部)
-------	--------	-------	------	-----	-------

左端からの距離			
観測位置(mm)	Case100	Case200	Case300
50	0	0	0
100			
150	0		
200			
250	0	0	
300			
350	0		0
400			
450	0	0	
500			
550	0		
600			
650	0	0	0
700			
750	0		
800			
850	0	0	
900			
950	0		0
1000			
1050	0	0	
1100			
1150	0		

※網掛け部が推定位置

繊維混入率 0.5%に比べ繊維混入率 1.0%の方が全体的 に断面毎のばらつきが小さい結果となった。スランプの 影響に関しては、有スランプ型の配合の方が自己充填型 と比べて変動係数が若干小さくなった。モルタルでは平 均、標準偏差ともにコンクリートに比べ大きくなった。 これは、コンクリートと違い粗骨材を使用しておらず、 練混ぜが十分に行われなかった可能性や、混入率が小さ いため繊維が十分に分散しなかった可能性がある。さら には、コンクリートの場合、粗骨材があることにより繊 維の配向が拘束され、鉛直方向に配向するものが増える ことにより、切断面に表れる繊維本数が見かけ上減少し たものと推察される。粗骨材のような配向を阻害するも のが入った場合の可視化実験はほとんど行われていな

表-4 断面の繊維本数のデータ

供試体名	平均(本)	標準偏差 (本)	変動係数
A200	321	39.3	0.122
B200	621	72.7	0.117
C200	365	40.6	0.111
D200	663	53.8	0.081
E200	433	62.6	0.145
F200	819	131.1	0.160

いため、引き続きの検討が必要である。

4.2 推定結果

それぞれの供試体における推定結果を図-6~図-15 および表-6~表-15 に示す。それぞれの表の最下段に 観測値と推定値の当てはまりを評価するために観測値 を被説明変数,推定値を説明変数とした相関係数を示す。

(1)供試体 A200(自己充填型, 混入率 0.5%)

図-6 および表-6 に推定結果を示す。Case100, Case200, Case300のそれぞれにおいて各推定点で観測値 によく対応した結果が得られた。左端からの距離が大き いほど繊維本数が増加する傾向を捉えている。また,相 関係数は全体的に大きくなった。

供試体名	平均(本)	標準偏差(本)	変動係数
A100	85	12.4	0.146
B100	172	32.3	0.191
C100	90	13.6	0.151
D100	161	22.0	0.137

(100mm×100mm 断面)

表-5 断面の繊維本数のデータ

(2)供試体 B200(自己充填型, 混入率 1.0%)

図-7および表-7に推定結果を示す。供試体 A200 に 比べ,全体的に推定値と観測値の差が大きくなった。特 に,Case200 における観測値との差が大きい結果となり, 相関係数も小さくなった。左端からの距離が 300mm~ 400mm において繊維本数が減少する傾向を捉えている。

(3)供試体 C200(有スランプ型, 混入率 0.5%)

図-8 および表-8 に推定結果を示す。Case100,

Case200 では各推定点で比較的観測値と対応する値が得 られたが Case300 では観測値と大きな相違を示す個所が あった。全体的に相関係数は非常に小さくなった。

(4)供試体 D200(有スランプ型, 混入率 1.0%)

図-9 および表-9 に推定結果を示す。全体的に観測 値と推定値で近い値が得られ,特に Case100, Case200 で の対応が良い結果となった。全体的に相関係数は小さく なったが Case100, Case200 では若干相関性が見られた。

表-6 供試体 A200 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	270	264	260	262
200	311	306	289	272
300	325	326	314	275
400	326	327	325	346
500	340	326	323	386
600	337	323	322	304
700	329	340	329	341
800	369	379	344	353
900	388	376	363	339
相関係数	0.64	0.64	0.71	

表-7 供試体 B200 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	577	593	611	581
200	601	617	671	579
300	702	618	737	701
400	678	595	724	732
500	621	561	629	608
600	571	511	534	631
700	527	514	521	601
800	586	573	588	628
900	639	609	649	720
相関係数	0.73	0.29	0.52	

表-8 供試体 C200 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	371	344	321	382
200	415	388	317	382
300	358	404	310	434
400	347	393	318	384
500	411	385	341	395
600	406	381	366	339
700	350	363	371	359
800	317	330	356	350
900	326	317	345	400
相関係数	-0.04	0.28	-0.74	

表-9 供試体 D200 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	630	629	593	581
200	701	701	590	689
300	656	700	581	672
400	584	626	588	639
500	647	604	611	677
600	672	629	630	689
700	698	640	647	650
800	697	639	664	612
900	669	650	687	637
相関係数	0.27	0.32	-0.20	

(5)供試体 E200(モルタル, 混入率 0.5%)

図-10 および表-10 に推定結果を示す。Case100, Case200 では観測値に近い値を示す点もみられたが,標 準偏差が2倍以上違う点も見られた。また,Case300 で はさらに多くの個所で相違点が見られた。すべてのケー スにおいて相関係数は非常に小さくなった。先述のとお り、コンクリートと違い粗骨材を使用しておらず,練混 ぜが十分に行われなかった可能性や,混入率が小さいた め繊維が十分に分散しなかった可能性があり,観測値の ばらつきが大きくなり,結果として推定結果にも影響を 与えたと考えられる。

(6)供試体 F200(モルタル, 混入率 1.0%)

図-11 および表-11 に推定結果を示す。すべてのケ

ースにおいて比較的観測値に対応している結果が得ら れ,相関係数も大きくなった。特に Case100, Case200 で は大きくなった。左端からの距離 600mm 付近で繊維本 数が大きくなる傾向にあり,さらにそれより距離が大き くなると繊維本数が減少する傾向も捉えている。

(7) 断面 100 mm×100 mmの推定結果

図 12~図 15,表 12~表 15 に推定結果を示す。断面 200 mm×200 mm同様に観測位置の間隔が最も小さい Case100 が最も観測値に対応した値が得られた。繊維混 入率 0.5%の供試体 A100, C100 においては観測値と推定 値の相違点が多くみられ,相関係数は小さくなった。繊 維混入率 1.0%の供試体 B100, D100 においては比較的観 測値に対応した値が得られ,相関係数は大きくなった。

表ー10 供試体 E200 における観測値と推定値の比較

	22001-00			
左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	416	369	340	449
200	493	445	358	386
300	431	453	373	504
400	372	395	392	549
500	364	393	420	324
600	419	447	454	406
700	433	464	455	489
800	414	446	422	485
900	410	449	395	374
相関係数	-0.04	0.06	-0.04	

表-11 供試体 F200 における観測値と推定値の比較

<u>左端からの距離</u> 観測位置(mm)	Case100	Case200	Case300	観測値
100	913	843	839	1089
200	909	839	824	790
300	818	817	808	878
400	772	771	834	833
500	790	817	907	826
600	935	962	991	1057
700	923	926	979	901
800	700	703	867	795
900	648	643	760	591
相関係数	0.79	0.79	0.57	

表-12 供試体 A100 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	88	93	89	73
200	94	100	88	86
300	94	103	86	77
400	93	102	86	69
500	90	99	86	92
600	82	91	87	92
700	83	89	88	114
800	87	93	88	60
900	92	89	89	79
相関係数	-0.46	-0.31	-0.02	

5. まとめ

本研究では,統計的手法を用いて繊維補強コンクリー トおよび繊維補強モルタル内の繊維本数を推定する手 法について実験的に検討した結果,以下の結論を得た。

- (1) 本実験で対象とした供試体寸法および繊維混入率の範囲であれば、およその繊維本数の推定が可能であった。
- (2) 自己充填型コンクリートと有スランプ型コンクリ ートでは自己充填型コンクリートの方が各断面に おける繊維本数のばらつきが小さく,推定値と観 測値の差が小さくなった。特に、繊維混入率0.5% では自己充填型コンクリートの方が差は小さくな った。逆に、モルタルに関しては繊維混入率が小 さいと、繊維本数の分散が大きくなるため、推定 値と観測値の差が大きくなる結果となった。
- (3) 繊維混入率 0.5%に比べ、繊維混入率 1.0%の方が観 測値によく対応した推定結果が得られた。
- (4) 観測値を得る間隔が小さいほど,推定結果の精度 が向上し、本研究では100mm~200mmの場合の誤 差が小さく、観測値に近い値が得られた。

表-13 供試体 B100 における観測値と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	123	127	141	129
200	114	118	162	114
300	152	126	183	185
400	179	153	195	218
500	166	178	200	181
600	191	203	210	188
700	201	208	204	172
800	185	192	180	217
900	166	185	158	176
相関係数	0.79	0.54	0.61	

表-14	供試体 C100	における観測値。	と推定値の比較

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値
100	95	101	102	87
200	91	97	98	90
300	93	94	94	129
400	91	92	91	70
500	87	89	89	88
600	83	85	85	65
700	85	81	87	108
800	79	75	93	94
900	86	75	99	76
相関係数	0.22	0.13	0.08	

表 — 15	供試体 D100	におけ	る観測値	と推定値の	比較
A 10		1-00.7			2070

左端からの距離 観測位置(mm)	Case100	Case200	Case300	観測値	
100	150	152	161	114	
200	142	143	171	160	
300	162	146	180	159	
400	176	159	180	225	
500	169	162	169	175	
600	162	156	158	174	
700	162	152	157	126	
800	161	151	165	152	
900	164	158	174	140	
相関係数	0.59	0.36	0.55		

本検討をとおして推定手法の構築にむけての可能性が 確認できた。引き続き実験データの充実をはかる予定で ある。

謝辞

本研究は科学研究費補助金「繊維補強コンクリートの ひび割れ発生前の繊維の効果の定量化と耐久性設計へ の反映(15H04024) 代表 國枝稔」の助成を受けて行っ た。ここに記して謝意を表す。

参考文献

- 1) 土木学会コンクリート委員会:繊維補強コンクリートの構造利用研究小委員会報告書,2015
- 周波:超高強度繊維補強コンクリートにおける繊維の配向と曲げ特性,岐阜大学博士論文,2014
- 間瀬茂:地球統計学とクリギング法 RとgeoRよる データ解析,2010
- 4) 本城勇介:地盤構造物の設計論と設計コード,土構 造物の品質評価と性能設計,(社)地盤工学会関西支 部,2005