論文 X線CTを用いた圧縮応力によるコンクリート内部の変形計測に用い る指標に関する研究

麓 隆行*1·裏 泰樹*2·竹原幸生*3

要旨:これまで,高荷重下の供試体内部を可視化できる装置がなかったため,圧縮応力下の供試体内部のペーストや骨材の挙動解明はできなかった。麓は 300kN までの荷重下で撮影可能な X 線 CT 装置を開発した。本装置で得た異なる荷重下での 3 次元画像に画像相関法等を実施すれば,供試体内部の変形を計測できる可能性がある。本研究では,画像相関法の精度向上のために,コンクリートに混入する目印となる指標を選定した。その結果,粒径 0.3mm のジルコニア球を混入したモルタルを用いて,PIV により弾性域や塑性域での 圧縮応力による断面内の内部変形を計測できることがわかった。

キーワード:コンクリート,モルタル, X線CT,指標,PIV,圧縮強度,応力-ひずみ関係

1. はじめに

コンクリートは,骨材とペーストとの複合材料である。 したがって,コンクリート性状の理解を深めるためには, ペーストと骨材の挙動を理解することが重要である。

例えば、圧縮応力によるコンクリートの体積変化にお ける骨材の役割について多くの研究がある^{1), 2)}。その手 法として、応力-ひずみ関係の詳細な分析や Hashin-Hansen モデル³⁾などの理論式などが用いられる。このよ うな間接的な推定手法を用いるのは、内部挙動を非破壊 試験で計測する手法が十分でなかったためだと考えられ る。

材料の内部観察が非破壊で可能な技術として MRI, X 線 CT, 弾性波などがあり⁴⁾⁻⁶, 近年では高解像度での観 察も可能となっている。これらの手法では,それぞれ磁 気,X線,弾性波などの減衰量分布を,多方向からの照 射結果から逆解析により推定する。よって,異なる荷重 下でのコンクリート内部の減衰量分布を比較し,それら の移動量を算定できれば,コンクリート内部の変形を計 測できると考えられる。

コンクリートの挙動の解明には数百 kN 程度の荷重を 再現しながら非破壊手法を適用する必要がある。しかし, そのような装置は世界的に見ても少ない。そこで,著者 らは 300kN の圧縮試験機の載荷部に X線 CT を設置した 装置を開発した⁷⁾。この装置では,300kN までの任意の 荷重をかけた状態で X線 CT 撮影が可能となる。また, 2 種類の荷重下での X線 CT 画像を比較することで,内 部変形を計測できる。

変形計測手法には、特徴的なパターン画像の移動方向 や移動量を計測する画像相関法(Digital Image Correlation: DIC)や粒子の移動を追跡する粒子追跡法

*1 近畿大学 理工学部社会環境工学科准教授 博(工) (正会員)
*2 近畿大学大学院 総合理工学研究科環境系工学専攻 (学生会員)
*3 近畿大学 理工学部社会環境工学科教授 博(工)

(Particle Tracking Velocimetry: PTV) などがある⁸⁾。これ らを精度良く実施するためには、明確な濃淡を有するこ とが重要となる。

X線CT法は,X線を照射された対象物内部のX線吸 収係数の空間分布を推定する手法である。X線吸収係数 は,照射されたX線特性,物質の種類,密度により異な る。すなわち,明確な濃淡を有する3次元画像を得るた めには,明確に異なる密度や素材の材料が分散している ことが必要となる。コンクリートの構成材料は主にセメ ントペーストと骨材であり,その密度差は小さい。そこ で,それらとの密度差が大きい粒子を指標として混合し, 精度の良い画像計測を行うことを考えた。

本研究では,開発した X 線 CT 装置で載荷応力下の供 試体内部の変形計測を行うための指標を選定することを 目的とした。そのため,まず指標を混入したモルタル供 試体の X 線 CT 画像で明確な濃淡や適度な分散の状態を 確認して指標選定を行った。そして,選定された指標を 用いて,載荷状態のモルタル供試体内部の変形計測を画 像相関法にて実施した。

2. 実験概要

2.1 X線 CT 法の概要と候補とした指標

X線 CT 法でコンクリート内部の変形計測を実施する ためには、変形前後のX線 CT 画像が必要になる。それ らの画像の濃淡模様や粒子追跡により内部変形挙動を計 測することが可能となると考えている。

X線CT法により得られる3次元画像は,照射された X線が対象物内部を透過する際の減衰度合いの分布を3 次元画像化している。3次元画像は白黒画像であり,減 衰度合いが大きいほど白色に,減衰度合いが小さいほど 黒色に表現される。X線の減衰度合いは,照射したX線の強さ,物質の密度や材質等の影響を受ける。すなわち, 密度差のある素材があれば,濃淡模様においても粒子同 定においても精度の良い計測が可能となると考えられる。

図-1 に、一般的な材料を使用したコンクリート内部 を可視化した例を示す。ペースト、細骨材および粗骨材 の密度が近いため、目視では認識できても、画像解析で 認識するのは難しい。すなわち、現在使用している材料 以外に、密度の高いあるいは低い指標を混合する必要が ある。ただし、低い密度であれば気泡等との見分けがつ かないと考えられる。

以上から、コンクリートに使用する材料よりも密度の 高い素材を混入することにより、内部変形を計測できる 3 次元画像を構築できると考えられた。そこで、指標と して次の材料を候補とし、以降の実験で最適な指標を選 定することとした。本研究では、図-2 に示す密度 3.98g/cm³のアルミナ粒子,密度4.90g/cm³の酸化鉄粒子,

および密度 6.06g/cm³ のジルコニア球を候補とした。アル ミナ粒子やジルコニア球は、ベアリングや研磨材として 使用されており、粒子径を 0.3mm、および 0.6mm の粒子 を用意した。また、酸化鉄粒子は、重量コンクリートな どに使用される酸化鉄粉を 0.3mm および 0.6mm のふる いに留まる粒子のみを用いた。

2.2 モルタル供試体の概要

研究対象はコンクリートであるが、本研究では基礎研 究であることから、モルタルを用いて実験を行った。セ メントには早強ポルトランドセメント(密度 3.13g/cn³) を用いた。細骨材には、川砂(表乾密度 2.62g/cm³,吸水

図-1 X線 CT 法で得られるコンクリート断面画像例

率 1.78%, 粗粒率 2.82),山砂 (表乾密度 2.60g/cm³,吸水 率 2.03%,粗粒率 2.11)および砕砂 (表乾密度 2.56g/cm³, 吸水率 2.04%,粗粒率 1.64)を混合して用いた。

配合は, 表-1 に示す W/C=65%を基準とした配合を用 いた。各指標を混入する際には, モルタル全体積の 0.5% を細骨材の一部と置換して使用した。プラネタリー式縦 型ミキサを用いて, 9L 練り混ぜた。まず, セメントおよ び細骨材を低速 30 秒で空練り後, 水と混和剤を投入し て低速 60 秒練り混ぜた。かき落とし後, 高速で 60 秒練 り混ぜた後, 指標を投入し, 高速で 30 秒練り混ぜた。

練混ぜ後, φ75mm×150mm 型枠に,指標を無混入の モルタル,および各指標を混入したモルタルを打設した。 まず指標の選定のために表-1に示す配合2~4で各5体 作製した。その後,選定した指標を混入した配合4と無 混入の配合1で各6体作製した。3層各10回突き棒で突 き,木槌で叩き,振動数200Hzの振動機を5秒押し当て

酸化鉄粒子

ジルコニア球 図-2 候補とした指標(いずれも粒径 0.3mm)

配合	指標	W/C	S/C	単位量(kg/m ³)						混和剤(C×%)	
番号		(%)		水	セメント	砕砂	山砂	川砂	指標	高性能 AE 減水剤	消泡剤
1	なし	65	3.6	306	470	284	495	627	0	0.5	1
2	アルミナ粒子	65	3.6	306	470	282	490	621	20	0.5	1
3	酸化鉄	65	3.6	306	470	282	490	621	25	0.5	1
4	ジルコニア球	65	3.6	306	470	282	490	621	30	0.5	1

注) 各指標を混入する際には、モルタル全体積の 0.5%を細骨材の一部と置換して使用した。

図-3 開発した X線 CT 装置の外観

た。その後、もう一度木槌で叩き、余剰空隙を追い出した。側面の気泡を取り除くために型枠の内周にコンクリ ートナイフを沿わせるように入れた。その後、ラップを して、湿布を被せ室温20℃、湿度60%の恒温室にて静置 し、翌日に脱型した。その後、標準養生を7日間行った。

2.3 モルタルを用いた実験の概要

フレッシュ性状については、モルタルフロー試験を行 った。硬化後の試験として、材齢7日に各指標を混入し た配合2~4の各供試体5体のうち1体をX線CT装置 にてスキャンし、再構成された断面画像を比較した。そ の後、残りの供試体のうち3体を、2000kNの油圧式圧縮 試験機にてJISA1108に準じて圧縮強度試験を行った。 フロー値および圧縮強度の結果に基づき、より適切と考 えられる指標を選定した。

指標選定後,再度作製した配合1および4の供試体6 体のうち3体を用いて、ひずみゲージを軸方向に取り付 け,2000kNの油圧式圧縮試験機にてJISA1108に準じて 圧縮強度試験を行った。その後,残りの供試体3体を用 いて、任意の圧縮荷重を負荷した状態での X線 CT 法に よる撮影を試みた。目標とした載荷荷重は 0, 25, 50, 75, 100, 110, 120, 135, 140kN とした。載荷速度は約 4kN/s とし, 目標荷重に達したら, サーボモーターにてそ の目標荷重を維持するように調整し、X線CT撮影を実 施した。撮影時間は約150秒であった。撮影を終えると 次に高い目標荷重へと荷重を増やし、破壊するまで同様 の作業を繰り返した。撮影結果から再構成された3次元 画像から、変形を求めたい2つの荷重の同位置と考えら れる断面画像を選定し、供試体内部を画像相関法の一つ である PIV(Particle Image Velocimetry; 粒子画像流速測定 法)計測を用いて計測した。本研究では、イリノイ大学で 開発されたフリーのソフトウエアのを使用した。

なお, 図-3 および図-4 に示す本研究で使用した近 畿大学所有の X 線 CT⁷⁾の撮影部は, X 線管(最大電圧 230kV, 最大電流 1000 μ A)と受感パネル(Active pixels

図-4 開発した X線 CT 装置の内部(撮影位置未調整)

図-5 15 打のフロー値と密度関係

1408×1888pixel)を有している。撮影部が,300kNの載荷 試験機の内側に設置されており,載荷状態での撮影が可 能である。本研究では,載荷試験機にて供試体の圧縮試 験を実施し,適宜応力状態を保持した状態で,X線の照 射条件を電圧210kV,電流100μA,解像度0.123mmとし, 試験体高さ中央から上下30mmの範囲を撮影した。撮影 された情報から再構成により,各応力下での3次元画像 を取得した。

3. 実験結果

3.1 指標の選定に関する検討結果

図-5 に各粒子の混入によるフロー値を示す。無混入 の場合,15 打フロー値は209mmであった。粒径0.6mm の各種指標を0.5%混入した場合,そのフロー値は202~ 213mmと,アルミナ粒子で少し低下が見られたが,無混 入の場合とほとんど差が見られなかった。一方,粒径 0.3mmの酸化鉄粒子やジルコニア球を用いた場合のフロ ー値は,202~209mmと無混入の場合とほぼ同じであっ た。しかし,アルミナ粒子を用いた場合には無混入の場 合に比べて21mm低下した。このフロー値の低下には,

図-6 指標を入れたモルタルの圧縮強度

アルミナ粒子の形状や混和剤の吸着の影響が考えられる。

図-6 に指標を混入した場合の圧縮強度試験結果を示 す。圧縮強度は45~46MPaに収まっている。モルタル全 体の0.5%混入した場合,球の種類と大きさによる差は見 られない。ここでは、無混入の場合について検討してい ない。混入の有無による差は後述の図-8 で述べる。

図-7に各種の指標を混入したモルタルに対して X線 CT 法により得られた断面画像を示す.アルミナ粒子を 混入した場合,粒径が 0.3mm においても、粒径 0.6mm に おいても粒子はほとんど確認できない。酸化鉄を混入し た場合,粒径 0.3mm ではわずかに粒子が認められる。一 方,粒径 0.6mm では粒子がはっきりと認識できる。そし て、ジルコニア球を用いた場合,粒径 0.3mm でも、粒径

で アルミナ粒子 (粒径 0.3mm) アルミナ粒子 (粒径 0.6mm)

tomm

酸化鉄粒子(粒径 0.3mm)

酸化鉄粒子(粒径 0.6mm)

ジルコニア球(粒径 0.3mm)

ジルコニア球(粒径 0.6mm)

図-7 供試体の断面画像例

図-8 応力-ひずみ関係

0.6mm でもはっきりと粒子が認識できる。すなわち,セ メントペーストや骨材に対して密度差が 4g/cm³ ほどだ と,指標位置を分別できる可能性があることがわかった。 また,粒径 0.6mm に比べ,粒径 0.3mm の場合,同じ体積 を混合しても粒子数が多く,より情報を得られる可能性 がある。そこで,本研究では,0.3mm のジルコニア球を 指標として選定した。

3.2 選定された指標を用いたモルタルの検討

図-8に、JIS に準拠した圧縮試験(以下、JIS 法)による 応力-ひずみ関係と、X線CT装置で載荷を実施した際の 応力-ひずみ関係を重ねて示す。JIS 法では、指標を混合 していないモルタルの圧縮強度は35.2MPa であり、静弾 性係数は21.8GPa であった。一方、ジルコニアを混合し

ひずみ 0-600μ間(弾性域)の変位

ひずみ 1600-2800μ間(塑性域)の変位

破壊後の X 線 CT 画像

図-9 供試体断面画像

た場合の圧縮強度は 36.3MPa, 静弾性係数は 21.4GPa であり, 応力-ひずみ関係にもほとんど差はみられない。

X線 CT 装置での載荷では、15MPa 程度まではほぼ同 じ関係であるが、それ以降は JIS 法に比べて同じ圧縮応 力下でのひずみが大きくなった。そして、最終的に圧縮 強度が 14~25%ほど低下した。すなわち、X線 CT 装置 での撮影しながらの載荷では、JIS 法と比べて弾性域に 近い低荷重域での応力-ひずみは同程度となるが、塑性域 に近い高荷重域では同荷重でもひずみが大きくなり、結 果として圧縮強度が低下することがわかった。これは、 X線 CT 撮影で 150 秒間、一定の圧縮応力で保持するた め、高荷重域ではクリープ破壊が進行したことが原因だ と考えられる。しかし、破壊時のひずみ値に大きな差は なく、本装置で破壊状態を観察することは有効であると 考えられる。

図-8において,油圧式試験機で載荷した場合の圧縮 強度 35.2MPa であったことから,少なくとも圧縮応力 11.7 MPa までは弾性域と考えられる。そのひずみは約 600µ であった。また,X線 CT 装置での載荷による応 力-ひずみ関係における変曲点は約 1600µ であり,すべ ての供試体での最小破壊ひずみは約 2800µ であった。

そこで、図-9に、ひずみ0,600,1600および2800 µの各間のX線CTによる断面画像を用いたPIV計測結 果と破壊後の断面画像を示す。

ひずみ 0-600μ での領域では、供試体の高さ方向の中 央に向かって上下から軸方向の圧縮変位が生じ、軸直角 方向の膨張変位が生じている状況が計測できる。その傾 向は供試体外周ほど大きい。

ひずみ 600-1600μ での領域では、断面画像の右上およ び左下に大きな斜めの変位が生じ、断面中央に斜めに生 じたせん断面が見られた。その後、ひずみ 1600-2800μ の領域では、左中央部に縦方向の変位が集中している様 子がわかる。その変位の集中する箇所は、破壊後の断面 画像の左側での破壊位置と一致していた。

以上から,ジルコニアを用いて,X線CTによるモル タルの内部変形計測が可能であることがわかった.今後, 種々の画像計測手法を適用し,詳細な内部変形観察を実 施したいと考えている。

4. 結論

本研究で得られた結論は以下の通りである。

(1) モルタルの指標として粒径 0.3mm のジルコニアが適 している。 (2) 粒径 0.3mm のジルコニア球を混入したモルタルで, 圧縮応力下の供試体の内部を PIV により計測したと ころ,供試体の内部変形状況を計測でき,最終的な破 壊に至る過程を推定できた。

今後, さらなる検討を行い, 精度のよい3次元計測へ と発展させていきたい。

謝辞

本研究は JSPS 科研費 26630207 の助成を受けたもので す。また、本実験を実施するにあたり、尾濱太一君にも ご尽力頂いた。ここに謝意を表する。

参考文献

- 川上英男: コンクリートの弾性係数と粗骨材の見か けの弾性, コンクリート工学年次論文集, Vol. 31, No. 1, pp. 493-498, 2008.
- 2) 麓隆行,柏木洸一: 副産物粗骨材の弾性係数がコン クリートの圧縮破壊挙動に及ぼす影響,コンクリー ト工学年次論文集, Vol. 31, No. 1, pp. 145-150, 2009.
- Z.Hashin,: The Elastic Modulus of Hetero-homogeneous Materials, J.of App.Mech, Vol. 29, No.1, pp.143-150, 1962.3.
- 人見尚:高分解能 X 線 CT を用いたコンクリートの 微細構造観察に関する研究,コンクリート工学, Vol. 47, No. 4, pp. 42-47, 2009.
- 大津政康: コンクリート非破壊評価のための弾性波 法の理論と適用, コンクリート工学, Vol. 46, No. 2, pp. 5-11, 2008.
- 杉山隆文,志村和紀,畠田大規:高解像度型 X 線 CT による AE モルタル中の空隙構造の透視,土木学会 論文集 E2, Vol. 67, No. 3, pp. 351-360, 2011.
- 7) 麓隆行:新しい機構のX線CTの開発とポリマーコンクリートの圧縮試験への適用,土木学会論文集E2, Vol. 69, No. 2, pp. 182-191, 2013.
- 高野大樹,大谷順: X線 CT による地盤材料の構造の 可視化 1.X線 CT の総論と画像解析手法,材料, Vol. 62, No. 10, pp. 654-659, 2013.
- K.T. Christensen, S.M. Soloff, R.J. Adrian: PIV Sleuth, Technical Report 943, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, 2000.