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ABSTRACT 
This paper described new insights on the influence of interfacial transition zone on drying shrinkage 
strain and compressive strength of concrete through numerical simulation. Using Rigid Body Spring 
network Model, analysis of drying shrinkage and compression test of drying concrete are performed 
considering long and short term model of ITZ. As a result, experimental trend is reproduced by using 
the proposed model. This reproducibility indicated that ITZ characteristics should be taken into 
account to simulate the shrinkage and strength of dried concrete simultaneously. 
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1. INTRODUCTION 
 
 Integrity of concrete structure through its service 
life should be required. For integrity evaluation process, 
it is necessary to evaluate the required performance at 
present and in future [1]. To predict structural 
performance of concrete in future, which is generally 
changing during its service life, it is important to 
elucidate the deterioration factors of concrete and to 
establish the fundamental knowledge of the aging 
concrete. Many studies have been reported about the 
factors visible and considered to be crucial, such as salt 
damage, frost damage, carbonation, and drying 
shrinkage crack. On the contrary, few studies have been 
reported about the impact of drying on both shrinkage 
and strength. But those have large impact on structural 
response to earthquakes [2]. 
 Now, unknown factor of numerical modeling of 
concrete with regards to material performance concrete 
is in interfacial transition zone (ITZ). According to 
previous studies, concrete forms ITZ between aggregate 
and paste. It is generally considered that this ITZ is 
porous and strength and Young’s modulus of ITZ are 
lower than that of normal cement paste or mortar region 
[3-5]. This porous region is produced in the concrete 
when it is fresh state and the aggregates capture rising 
bleeding water from bottom side. In matured state, the 
portlandite is precipitated much rather than normal 
mortar or paste region, because the bleeding water 
contains rich calcium ions which is the most rich ion in 
the pore solution of concrete [6]. This ITZ has strong 
impact on concrete property such as diffusion process 
[7], strength [8], and shrinkage behavior [9]. 
 Based on these backgrounds, in the present 
contribution, we investigated an impact of ITZ on 
mechanical performance of concrete through numerical 
simulation to reproduce the drying shrinkage strain and 

compressive strength of dried concrete. 
   
2. NUMERICAL MODEL 
 
2.1 RBSM 
 Rigid Body Spring network Model (RBSM) was 
employed in this study. In RBSM, a continuum material 
is considered as an assembly of rigid particle elements 
interconnected by zero-size springs along their 
boundaries. In the present modeling, each interface 
between two rigid particles was divided into several 
triangles sharing the barycenter of the interfacial plane, 
with each triangle having three individual springs, one 
for a normal force and two for orthogonal tangential 
forces as it is shown in Fig. 1. 
 At the same time, the nonlinearity of normal and 
tangential springs can take into account the nonlinearity 
of the rotation behavior on the interfacial plane. 
 The nonlinearity and discrete behavior of the 
continuum material is emulated by cracks developing at 
the interfaces of the rigid particles. For this reason, 
crack patterns and the resultant nonlinear behavior of 
the target model are significantly affected when a mesh 
design is employed. To solve this problem, random 
geometry using Voronoi diagrams was applied 
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Fig. 1 Schematic of the elements in RBSM and 

springs connecting them 
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2.2 Modeling of concrete material 
 In this study, to represent the fracture behavior of 
drying concrete, three different phases are modelled 
namely, mortar springs between mortar elements, 
aggregates springs between aggregate elements, and 
ITZ spring between mortar and aggregate elements.  
2.2.1 Modeling of mortar matrix and aggregate  
 Figure 2 shows schematic of stress-strain 
relationships for mortar and aggregate springs and 
Table 1 shows the material properties. For the mortar 
and aggregate springs, tensile behavior is modeled by a 
linier elastic up to tensile strength, followed by bilinear 
softening branch of 1/4 model based on a given tensile 
fracture energy. Compression behavior of mortar and 
aggregate springs is modeled by S-type curve derived a 
relationship between stress and volume under 
hydrostatic pressure conditions. This model will not 
collapse in compression. In case of shear spring, its 
behavior is defined by Mohr-Coulomb type criterion. 
The shear strength is decided by the stress of normal 
spring and is assumed to be constant when the normal 
stress is greater than σb in Fig.2(c)  
2.2.2 Parameter of materials 
 Parameters for the constitutive laws are 

calibrated by conducting parametric study following the 
pioneer work of the proposed model [10]. For this 
process, uniaxial compression test of mortar is 
conducted [11]. The results were summarized in Table 2 
and Fig. 3.  
 
3. ANALYSIS OF DRING SHRINKAGE  
 
3.1 Analysis object  
 Figure 4 shows the analysis object. Specimen 
with dimension φ50×100mm is target of the present 
numerical analysis. The detail of the experiment is 
shown in our previous paper [11]. Three dimensional 
mesh of the surface of the target specimen is shown in 
Fig. 4(a). The specimens are modeled as a two-phase 
model, such as mortar matrix and aggregates. Fig. 4(b) 
shows the distribution of aggregates in the target 
specimen and Fig. 4(c) shows a cross sectional plane of 
the target specimen for the clarity of the distribution of 
the aggregates. In this figure, the white color represents 
mortar elements, and the black color is corresponding 
to the aggregate elements. The size of coarse aggregate 
particles is set from 8mm to 20mm. In this model, 
based on the companion experiment, the total volume 

 
(a) Tension model of normal 

spring 
 

 
(b)Compression model of 

normal spring 
(c)Shear spring model 

 
Fig. 2 Schematic of stress-strain relationships for mortar and aggregate springs. 

 
    Table 1 Physical properties of materials in the numerical analysis.  

 

Normal spring 
Young’s 
modulus 

E*(N/mm2) 

Tension 
strength 

Ft*(N/mm2) 

Fracture 
energy 

Gf*(N/m) 

Compressive 
strength 

Fc*(N/mm2) 
Mortar 18 3.5 70 46.7 

Aggregate 70 200 ― 200 
ITZ ― ― 7 46.7 

 
 

Table 2 Applied values of springs in the numerical calculation（* is experiment and italic is analytic） 
Normal spring Shear spring 

Young’s 
modulus 

E 
(N/mm2) 

Tension 
strength 

ft (N/mm2) 

Fracture 
energy 

Gf (N/m) 

Compressive
strength 

fc (N/mm2) 

Cohesion 
c (N/mm2)

Internal  
friction angle
φ (degree) 

Fracture 
criterion 
σb (N/mm2) 

η=G/E(-)
(G : Shear 
stiffness)

1.4E* 1.2Ft* 0.5Gf* 1.5Fc* 0.14Fc* 37 0.5Fc* 0.40 

Fig. 3 Result from analysis of fitting 
mortar 
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concrete due to drying accumulated prior to the loading 
process has large impact on decrease in concrete 
strength. But in the experimental case, strength 
re-increase was shown, and this is explained by the 
strength change of cement paste due to drying. In 
general, calculation results which take into account the 
mortar strength change due to drying showed similar 
trend to that of experimental results. 
 However, absolute value of compressive strength 
is not completely reproduced here. It is suggested that 
impact of cracks are overestimated. For more precise 
evaluation, we have to take into account the water 
vapor transfer, resultant gradual drying, and alteration 
of mortar strength. This gradual changing may 
compensate the impact of cracks due to drying. 
 The significance of this calculation results is that 
the proposed numerical calculation procedure, which 
takes into account ITZ role in concrete, the mortar 
strength change originated from colloidal feature of 
calcium silicate hydrates, as well as damage in concrete 
derived from volumetric difference between coarse 
aggregate and mortar under the drying process, reflects 
the major mechanism of concrete strength alteration 
and shrinkage due to drying. The proposed calculation 
process reproduced the concrete behaviors of concrete 
strength and drying shrinkage strain at the same time. 
 
5. CONCLUSIONS 
 
 In this study, drying shrinkage and uniaxial 
compression test of concrete are simulated by using 
rigid body spring network model. And ITZ behaviors 
are modeled for long-term drying processes and 
short-term loading. Considering these ITZ behaviors, 
shrinkage of concrete, strength alteration trend due to 
drying, damage accumulation due to volume change 
mismatch between mortar and coarse aggregates, were 
well reproduced. 
 The following points were shown in the 
calculation: 
(1) Cracks in mortar around coarse aggregates under 

drying process were yielded and in severer drying 
cases those cracks tent to connect the aggregates.  

(2) In analysis of drying shrinkage, modeling of ITZ 
is necessary to reproduce the concrete shrinkage, 
in which ITZ model takes into account the weak 
physical properties reflected by the porous 
characteristic. 

(3) In analysis of uniaxial loading test, cracks, which 
along the coarse aggregates in parallel to the 
loading direction, are produced and number of 
cracks are increased and cracks tended to connect 
each other as the loading stress is increased. 

 These behaviors are also consistent to the 
previous experimental researches. 
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