論文 部分的に高強度化した鉄筋を柱および梁主筋に用いた RC 造十字形 柱梁接合部の終局強度に関する研究

中村 直樹*1・岸田 慎司*2・福山 拓真*3・村田 義行*4

要旨:部分的に高強度化した鉄筋を梁主筋に用いることで,強度の境界部分で梁主筋を降伏させ,積極的に ヒンジを柱梁接合部から離すことで,柱梁接合部の変形を抑制し,柱梁接合部の損傷の低減が見込めること を確認した。しかし,梁主筋を部分高強度化した試験体の中で,柱梁曲げ強度比が小さい場合(1.1~1.4 程度), 接合部の降伏破壊型となった試験体があり,破壊形式や履歴性状に違いがあった。また,梁主筋を部分高強 度化した場合の接合部曲げ終局強度を算出し,適用できることを示した。

キーワード:鉄筋コンクリート造,柱梁接合部,部分高強度鉄筋,終局強度,柱梁曲げ強度比

1. はじめに

近年,塩原らの研究により,柱梁曲げ強度比(柱の曲 げ終局強度/梁の曲げ終局強度)2.0 程度以上大きくなけ れば,柱梁接合部の破壊が先行し,想定通りの崩壊型が 実現できない可能性があることが指摘されている¹⁾。今 後,柱の配筋が過密になることが想定されるが,柱の主 筋量を多くすると,施工が困難となる。そこで,部分的 高強度化した鉄筋を柱主筋に用いることで柱の主筋量低 減を目指す。また,柱の主筋量を増やさず,柱梁曲げ強 度比が1.0~1.5 程度で,部分的高強度化した鉄筋を梁主 筋に用いることで,梁のヒンジ位置を柱梁接合部から離 すことで,柱梁接合部の損傷抑制を目的としている。

昨年度²は部分的に高強度化した鉄筋を柱主筋に用い て,柱の主筋量を減らしても,最大耐力や破壊性状に変 わりはなく,柱主筋の低減を見込めることを確認した。 また,部分的に高強度化した鉄筋を梁主筋に用いること で,高強度部分と普通強度部分の境界で梁主筋を降伏さ せ,積極的にヒンジを柱梁接合部から離すことで,柱梁 接合部の変形を抑制し,柱梁接合部の損傷の低減が見込 めることを確認した。

本論文では部分的に高強度化した鉄筋を梁主筋に用 いることに関して,柱梁曲げ強度比に着目して,破壊性 状や終局強度の検討を行う。また,柱梁接合部の曲げモ ーメント抵抗機構の劣化による接合部の降伏破壊²⁰につ いても考慮した。

2. 実験計画

2.1 試験体概要

試験体諸元一覧を表-1 に,鉄筋の材料特性を表-2 に,梁主筋高強度化幅の決定と各部材の断面を図-1 に

示す。試験体は 1/2 スケールの平面十字形部分架構 6 体 である(部分的に高強度化した鉄筋を梁主筋に用いた試 験体は 5 体)。A シリーズは柱梁曲げ強度比を 1.1~1.5 程度とし, B シリーズは柱梁曲げ強度比を 2.0 程度とし た。なお,試験体 A-1, A-3, A-4 については昨年度²⁾に 発表した試験体である。

試験体 A-1 は柱梁主筋ともに普通鉄筋を用いた基準試 験体である。柱梁曲げ強度比は 1.4 程度とした。試験体 A-3 は試験体 A-1 と梁端部での梁曲げ終局強度が等しく なるように梁の配筋と高強度化範囲を決定しており、部 分高強度化の範囲は柱フェイスから 318mm(0.795D_b)ま での区間とした(図-1参照)。柱梁曲げ強度比は1.4程 度とした。試験体 A-4 は試験体 A-3 より部分高強度化の 範囲を狭めた試験体で、部分高強度化の範囲は柱フェイ スから 200mm(0.5Db)までの区間とした。試験体 A-5 は試 験体 A-3 より, 柱の主筋量を減らし, 柱梁曲げ強度比を 1.0に近づけた試験体で柱梁曲げ強度比を1.1程度とした。 試験体 A-6 は柱梁ともに部分的に高強度化した鉄筋を用 い、柱主筋の部分高強度化の範囲は梁上端、下端からと もに上下 350mm(1Dc)までの区間とした。柱梁曲げ強度 比を 1.4 程度とした。試験体 B-3 は試験体 A-3 と梁の配 筋は等しく,柱の主筋量とコンクリート強度を大きくし た試験体で柱梁曲げ強度比は2.0以上とした。

梁補強筋のピッチは 2013 年度に作製した試験体(試験体 A-1, A-3, B-3) は 150mm としたが,試験体 A-3 や B-3 で梁端部の圧壊や梁主筋の座屈が見られたため, 2014 年度以降に作製した試験体は補強筋のピッチを 100mm とした。さらに,部分高強度化した鉄筋を梁主筋 に用いた試験体に関して,梁の強度の境界部分の損傷を 抑えるために,試験体 A-5, A-6 は梁端部付近のみ補強

^{*1} 芝浦工業大学 大学院理工学研究科建設工学専攻 修士課程 (学生会員)

^{*2} 芝浦工業大学 工学部建築学科教授 工博 (正会員)

^{*3} 株式会社熊谷組

^{*4} 高周波熱錬株式会社

	シリーズ			А			В
試験体		(A-1)×1	A-3	A-4	A-5	A-6	B-3
作成した年度		2013		2014	2015		2013
コンクリート強度(N/mm ²)		34.7		42.6	47	40.3	
	引張主筋	4+2-D16	6 2–D16 4–D13				2-D16 4-D13
·····梁	引張主筋比(%)	1.19		0.	0.90		
	補強筋ピッチ(mm)	15	50	100	50(柱フェイ	150	
	全主筋		10-D16		6-D16	6-D16	16-D19
柱	主筋比(%)		1.62		0.97	0.97	3.74
仕	軸力(kN)	669	668	673	764	579	768
	軸力比	0.16		0.13	0.13	0.10	0.16
接合部	補強筋量(%)	0.32		0.31			0.31
柱 接合部 部分高強度化 鉄筋について 柱梁	高強度化を 使用した部材	-		梁主筋	梁主筋 柱主筋		梁主筋
	範囲(mm) (フェイス位置より)	-	318	200	320	320(梁) 350(柱)	318
柱梁曲げ強度比		1.37	1.38	1.52	1.13	1.42	2.14
接合部せん断余裕度		1.15	1.18	1.44	1.34		1.32

表-1 試験体諸元一覧

【共通因子】 梁スパン: 3200mm 梁断面: 250×400mm

- 柱スパン:2830mm – 柱断面:350×350mm – 柱補強筋:□-U7.1(SBPD1275/1420)@100

※1 試験体の()は柱梁主筋ともに普通鉄筋を用いた試験体

※2 試験体A-5, A-6は梁補強筋ピッチは柱フェイス付近は50mmで、そのほかは100mm(図-1参照)

表--2 材料特性

在由	维许	降伏強度	降伏ひずみ	ヤング係数	引張強度	
牛皮	亚大 月刀	(N/mm^2)	(µ)	$(10^{5}N/mm^{2})$	(N/mm^2)	
2013	D13(SD345)	366	2466	1.74	554	
	D13(高強度)	1145*	8002	1.90	1420	
	D16(SD345)	371	2064	1.92	560	
	D16(高強度)	1116*	8095	1.83	1396	
	D19(SD345)	366	2141	1.86	566	
	U7.1	1309*	8935	1.89	1428	
2014	D13(SD345)	379	2128	1.91	556	
	D13(高強度)	972*	7187	1.87	1050	
	D16(SD345)	396	2166	1.91	560	
	D16(高強度)	964*	7110	1.89	1054	
	U7.1	1434*	9079	2.02	1466	
2015	D13(SD345)	388	2410	1.83	561	
	D13(高強度)	997*	7206	1.91	1073	
	D16①(SD345)	399	2200	1.96	586	
	D162(SD345)	427	2284	1.96	595	
	D16(高強度)	850*	6393	1.94	923	
	U7.1	1393*	8533	2.13	1480	
* 0.2%オフセット						

2015年度D16①:試験体A-5柱主筋

2015年度D16②:試験体A-5梁主筋, A-6柱梁主筋

筋のピッチを 50mm とした (図-1 参照)。

柱梁曲げ強度比は,材料試験結果を用い,平面保持 を仮定した断面解析により求めた。

2.2 加力方法

試験体の支持は,梁反曲点位置をピンローラー支持, 下柱をピン支持とし,上柱に3軸1点クレビスを設け て,柱に軸力導入後,水平ジャッキで水平方向に載荷 した。加力は層間変形角制御(層間変形角(%)=100 ×水平変位/柱のスパン(2830mm))による正負交番

①基準試験体(4+2-D16)の終局モーメント M1 算出

②主筋量を減らした試験体(2-D16, 4-D13)の終局モーメント M2 算出
 ③M2 を線形補完して柱フェイスで M1 となる長さ a_bを算出

$$M1 = \frac{L_0}{L_0 - a_b} M2$$

図-1 梁主筋高強度化幅の決定と各部材の断面

写真-1 破壊状況(層間変形角 4.0%, 2 サイクル目ピーク時)

▲ 強度境界部

繰り返し載荷とした。層間変形角0.25%の加力を1回, 層間変形角0.5%,1.0%,2.0%,3.0%(試験体A-1, A-2,A-3,A-4,B-3は1回),4.0%の加力を各2回, その後,引き切りを5.0%~6.0%の間で行った。

3. 実験結果

3.1 層せん断力と層間変形角関係および破壊性状

層せん断力 Q-層間変形角 R 関係を図-2に, 層間 変形角 4.0%の 2 サイクル目の破壊状況を写真-1に示 す。図中には最大耐力,鉄筋のひずみの値から判断し た梁主筋,柱主筋の降伏,平面保持を仮定した断面解 析から算出した梁曲げ終局時の層せん断力と接合部曲 げ降伏時の層せん断力(部分高強度化の取り扱いにつ いては4節に示す)を示す。

主筋に普通強度の鉄筋のみを使用した基準試験体 A-1 は梁主筋降伏後,層間変形角2.0%のサイクルで最 大耐力となった。履歴性状はスリップ性状が著しかっ た。破壊性状は最終的に柱梁接合部の損傷が大きく, かぶりコンクリートが剥落した。

梁主筋を部分高強度化した試験体全て(試験体 A-3,

A-4, A-5, A-6, B-3), 基準試験体 A-1 と破壊性状を 比較すると, 柱梁接合部の損傷は抑えられており, 梁 の強度境界部付近にひび割れが集中した。最大耐力も 試験体 A-1 より大きな層間変形角時となり, 試験体 A-5を除いて層間変形角4.0%時以上のサイクルで最大 耐力となった。履歴性状についても, 梁主筋を部分高 強度化した試験体は基本的に最大耐力時まで紡錘型と なった。しかし, 梁主筋を部分高強度化した試験体の 中には最大耐力後に著しい耐力低下, スリップ性状や 柱梁接合部の損傷が見られた。

試験体 A-3 は最大耐力後の層間変形角 4.0%の2サイ クル目からの耐力低下,スリップ性状が著しかった。 これは,梁上端部の圧壊が著しかったことや柱梁接合 部のせん断ひび割れの幅が大きくなったことなどが考 えられる。

柱梁曲げ強度比が一番低い試験体 A-5(柱梁曲げ強 度比1.13)は梁主筋を部分高強度化した試験体の中で 最も小さな層間変形角時(3.0%時のサイクル)に最大 耐力となった。柱梁接合部の損傷も梁主筋を部分高強 度化した試験体の中では大きく,接合部の入隅部付近 のかぶりコンクリートが剥落した。

試験体 B-3 は層間変形角 6.0%時のサイクルでの耐力 低下が見られたが、梁主筋の強度境界部で座屈が見ら れたため、座屈によって耐力低下が起こったと考えら れる。ただし、耐力低下は引き切り時のため、試験体 B-3 の履歴性状は良好であったと考える。

なお、梁主筋を部分高強度化した試験体は梁主筋が 降伏した際、はじめに境界部付近の普通強度部分で降 伏し、柱梁接合部付近は高強度であるため、降伏しな かった。柱主筋も部分高強度化した試験体 A-6 や柱梁 曲げ強度比の大きい試験体 B-3 は柱梁接合部付近での 柱主筋の降伏はなかった。

3.2 各部材の変形成分

正載荷時の各部材(柱梁接合部,柱,梁)の変形成 分を図-3に示す。図中の数値は,接合部の変形成分 および梁の変形成分が各変形成分の合計に占める割合 を示す。柱と梁の変形は部材のたわみから,接合部の 変形は接合部のせん断変形から算出した。

主筋に普通強度の鉄筋のみを使用した基準試験体 A-1 は層間変形角が大きくなるにつれて、梁から接合 部へと変形成分が推移し,層間変形角 4.0%時になると 接合部の変形が梁の変形を上回った。

梁主筋を部分高強度化した試験体は,基準試験体 A-1 と比較すると接合部の変形は抑制され,梁の変形 成分が大きかった。特に,履歴性状の良好な試験体 A-4, A-6, B-3 は全ての梁主筋が降伏していない層間変形角 時1.0%時までは接合部の変形成分は増加したが,1.0%

以降は一定もしくは減少し,梁の変形成分が増加した。 しかし,梁主筋を部分高強度化した試験体の中におい て,履歴性状が良くなかった試験体 A-3, A-5 は全て の梁主筋が降伏していない層間変形角 1.0%時以降も 接合部の変形成分は徐々に増加し続けた。

3.3 接合部入力せん断応力度

接合部せん断応力度-接合部せん断変形角関係を図 -4 に示す。鉄筋の応力は危険断面位置に貼付したひ ずみゲージの出力を Ramberg-Osgood モデルによって 応力に変換した。入力せん断力は鉄筋の応力と層せん 断力から算出した。グラフは青色が正載荷時で赤色が 負載荷時であり、丸で示したプロットは最大耐力とな ったサイクル時を表す。

基準試験体 A-1 は接合部の入力せん断応力度が接合 部のせん断強度を上回ることはなかったが,最大耐力 以降,接合部の入力せん断応力度が急激に低下し,接 合部のせん断変形角が増加した。

梁主筋を部分高強度化した試験体も接合部の入力せん 断応力度が接合部のせん断強度を上回ることはなかっ た。さらに,接合部入力せん断応力度が急激に低下す ることはなかった。そのため,層せん断力の低下が接 合部のせん断力に依存していないと考えられる。

3.4 破壊形式の決定

主筋に普通強度の鉄筋のみを使用した基準試験体 A-1 は梁主筋降伏後最大耐力に達し,その後,接合部 の変形成分が増加して,柱梁接合部の損傷が激しくな った。また,接合部のせん断力の低下とともに層せん 断力も低下した。そのため,破壊形式を梁曲げ降伏後 接合部せん断破壊型(BJ型)とする。

部分的に高強度化した鉄筋を梁主筋に用いた試験体 は基準試験体 A-1 と比較すると主筋降伏後(層間変形 角 1.0%以降) 接合部の変形成分は抑えられていて,損 傷は抑えられていたが,部分的に高強度化した鉄筋を 梁主筋に用いた試験体の中で比較すると,試験体ごと に差があった。

そこで,履歴性状が紡錘型であり,梁主筋降伏以降, 接合部の変形成分が一定もしくは減少し,最終変形時 まで梁の変形成分が大きく,柱梁接合部に大きな損傷 は見られなかった試験体は梁曲げ降伏型(B型)とした。 該当する試験体は柱梁曲げ強度比 1.52 の試験体 A-4, 柱梁曲げ強度比 1.42で柱梁主筋ともに部分高強度化し た試験体 A-6,柱梁曲げ強度比 2.14 の試験体 B-3 であ る。

一方で, 柱梁曲げ強度比 1.38 の試験体 A-3 は梁主筋 降伏後も接合部の変形成分が増加し, 最大耐力は層間 変形角 4.0%時であるが, 最大耐力以降の耐力低下が顕 著であった。しかし, 破壊性状を見ると, 柱梁接合部 中央部に圧壊は見られず, 層せん断力の低下が接合部 のせん断力に依存していないため, 破壊形式を接合部 降伏破壊型とする。また, 耐力低下については梁上端 部の圧壊も要因として考えられる。

柱梁曲げ強度比1.13の試験体A-5は梁主筋を部分高 強度化した試験体の中では最も小さな層間変形角時 (3.0%時のサイクル)に最大耐力となった。梁主筋降 伏後も接合部の変形成分が増加し,柱梁接合部の損傷 も梁主筋を部分高強度化した試験体の中では大きく, 接合部の入隅部付近のかぶりコンクリートが剥落した。 しかし,柱梁接合部中央部に圧壊は見られなかったこ とから,破壊形式を接合部降伏破壊型とする。

梁主筋を部分高強度化した試験体の中で,破壊形式 や履歴性状に違いがあり,柱梁曲げ強度比が小さい場 合(1.1~1.4 程度),接合部の降伏破壊型となった試験 体があった。試験体 A-3 と試験体 A-6 はともに柱梁曲 げ強度比が 1.4 程度であったが,破壊形式は試験体 A-3 が接合部降伏破壊型,試験体 A-6 は梁曲げ降伏型であ った。そのため,試験体 A-6 は柱主筋も部分高強度化 していたため,柱梁接合部内における柱主筋降伏が無 かったことや,梁端部圧壊の有無が破壊形式、履歴性 状に関わると考えられる。

4. 最大耐力の実験値と計算値の比較

最大耐力の実験値と計算値の比較を表-3 に示す。 梁曲げ終局時の計算値は平面保持を仮定した断面解析 から算出した。梁主筋を部分高強度化した試験体は強 度境界位置の普通強度部分の曲げ終局強度を線形補完 して節点モーメントを算出し,層せん断力に変換した。

釣合破壊時および接合部曲げ強度時の計算値は柱梁 接合部の曲げモーメント抵抗機構³に基づき算出した。 なお,梁主筋を部分高強度化した試験体に関して,以 下のことを変更して水平方向の抵抗モーメントを算出 した。

・引張側主筋の強度 $T'_b(T_{by})$

引張側の主筋の強度は強度境界位置での強度を引張 側柱主筋の重心位置に線形補完する。(図-5参照)

$$T'_{b} = \frac{L_{0} + (D_{c} - d_{c})}{L_{0} - d_{b}} T_{by}$$
(1)

 L₀:梁部材の長さ(柱フェイスから反曲点位置まで)

 D_c:柱せい
 d_c:柱の有効せい

 a_b:高強度化範囲(柱フェイスから)

 T_{bv}:普通強度部分の降伏強度

図-5 引張側主筋の強度T'_bの算出時の線形補完

表-3	最大耐力の実験値と計算値の比較

試験体		(A-1)	A-3	A-4	A-5	A-6	B-3
破壊形式		BJ	接合部降伏	梁曲げ降伏	接合部降伏	梁曲げ降伏	梁曲げ降伏
柱梁曲げ強度比		1.37	1.38	1.52	1.13	1.42	2.14
接合部せん断余裕度		1.15	1.18	1.44	1.34	1.34	1.32
実験値(Qmax)	ㅂ	120.5	121.4	119.9	133.6	141.8	145.2
最大耐力	負	-112.8	-119.8	-120.9	-129.6	-132.4	-125.5
梁曲げ終局時計算値(1)		116.1	115.3	110.5	128.8	128.8	116.4
実験値(Qmax)	H	1.04	1.05	1.08	1.04	1.10	1.25
/計算値(1)	負	0.97	1.04	1.09	1.01	1.03	1.08
釣合破壊時(2)		147.8	146.0	161.2	165.3	159.9	142.7
接合部曲げ強度(3)		121.3	121.7	128.0	131.2	135.4	126.0
実験値(Qmax)	正	0.99	1.00	0.94	1.02	1.05	1.15
/min(計算値(2,3))	負	0.93	0.98	0.94	0.99	0.98	1.00
実験値、計算値は層せん断力(kN) 色付きは10%以上の差							

実験値、計算値は層せん断力(kN)

・圧縮側主筋の応力T_{b2}の制限

柱梁接合部内の鉄筋は高強度であることを考慮する。

$$T'_{by} \ge T_{b2} \ge -T'_{by} \, \text{have } T_{b2} \ge -\frac{\varepsilon_u}{\varepsilon'_v} T'_{by} \tag{2}$$

T'_{hv}:高強度部分の降伏強度

 ε_u : コンクリートの終局ひずみ(0.3%とした) ε': 高強度部分の降伏ひずみ

なお、柱主筋を部分高強度化した場合も同様に鉛直 方向の抵抗モーメントを算出した。柱梁接合部内の補 強筋は高強度鉄筋を使用しており降伏しないため、層 せん断力が最大時のひずみと材料試験から算出したヤ ング係数より応力を求めて使用した。

梁主筋を部分高強度化した全ての試験体の最大耐力 が正載荷負載荷ともに梁曲げ終局時の計算値を上回っ た。実験値と計算値の比は、柱梁曲げ強度比が大きい ほど余裕があった。

つづいて, 釣合破壊時, 接合部曲げ強度時の計算値 の小さい方(本研究では全て接合部曲げ強度時)と実 験値を比較すると、接合部降伏破壊型の試験体 A-3、 A-5 では、0.98~1.02 とほぼ一致しており、この方法 によって,接合部曲げ強度を算出できると考えられる。

5. まとめ

主筋に普通強度の鉄筋のみを使用した試験体と比較 すると梁主筋を部分高強度化した試験体は柱梁曲げ強 度比が 1.1 程度と小さくても柱梁接合部の変形と損傷 は抑制され、履歴性状が良くなった。

しかし, 梁主筋を部分高強度化した試験体の中で比 較すると、破壊形式や履歴性状に違いがあり、柱梁曲 げ強度比が小さい場合(1.1~1.4程度), 接合部の降伏 破壊型となった。

試験体 A-3, A-6 はともに柱梁曲げ強度比が 1.4 程度 であったが破壊形式が異なったため、柱梁接合部内に おける柱主筋降伏や梁端部の圧壊が関わっていると考 えられる。

梁曲げ降伏型の試験体についても耐力低下を防ぎ, 最終変形時まで紡錘型の履歴性状を得るには、ヒンジ 位置付近の梁主筋の座屈を防ぐことが必要であると考 えられる。

梁主筋を部分高強度化した試験体において、柱梁曲 げ強度比が小さいと接合部の降伏破壊が生じ、柱梁曲 げ 強度比が大きいと梁曲げ 降伏型となり,最大耐力と 梁曲げ終局強度の計算値との比は、柱梁曲げ強度比が 大きいほど余裕があった。接合部の曲げ強度は引張側 主筋の強度を強度境界位置での強度を引張側柱主筋の 重心位置に線形補完することで適用できた。

参考文献

- 1) 楠原文雄,塩原等:鉄筋コンクリート造柱梁接合部 の終局強度に及ぼす設計因子の影響:第13回日本 地震工学シンポジウム論文集,pp1398-1405: 2010.11
- 2) 岸田慎司,福山拓真,村田義行:部分的に高強度化し た鉄筋を柱および梁主筋に用いた RC 造十字形柱 梁接合部の実験:コンクリート工学年次論文 集,vol.37,No.2,pp277-282:2015
- 3) 楠原文雄、塩原等:鉄筋コンクリート造十字形柱梁 接合部の終局モーメント算定法:日本建築学会構 造系論文集,第 75 巻,第 667 号,pp2027-2035: 2010.11

謝辞

本研究は高周波熱錬株式会社との共同で行ったもので す。また,本実験はアシス株式会社で試験体を製作し, 首都大学東京の大型構造物実験棟で行いました。本研 究において、首都大学東京の北山和宏教授、研究室の 方々,アシス株式会社の方々に多大な協力を得ました。 ここに深く感謝の意を表します。