論文 DFRCC を用いた斜め引張破壊型 RC 梁へのせん断補強特性

大宅 慧*1・角掛 久雄*2・公文 裕之*3

要旨:著者らは斜め引張破壊型 RC 梁を対象に補強範囲を変数とした DFRCC によるせん断補強実験により提案したせん断耐力算定式の適用性を示したが,算定式の累加項目であるトラス効果および骨材の噛み合わせ効果の内訳については検討できていない。さらに,側面全域補強ではせん断圧縮破壊が生じたため,補強範囲に制限を設けている。そこで,本研究では補強厚比:10%の側面全域補強供試体で斜め引張破壊となることを確認し,実験を再現する FEM 解析モデルを基準としたパラメトリック解析によりせん断補強時の耐荷特性を明らかにし,算定式の累加項目について検討を行った。その上で,せん断耐力算定式の修正を行った。 キーワード:DFRCC,斜め引張破壊,せん断補強,トラス効果,骨材の噛み合わせ

1. はじめに

高靱性繊維補強セメント複合材料¹⁾(以下 DFRCC: Ductile Fiber Reinforced Cementitious Composite)はモルタ ル中に繊維を混入した材料である。繊維の架橋効果によ る引張抵抗や複数微細ひび割れによるひび割れ幅の低減 といった効果を期待できるため、補修・補強材料として の高い適応性が期待できる。

そのため、著者らは DFRCC を用いた RC 梁への曲げ 補強効果の検討²⁾およびせん断補強効果の検討^{3),4),5)} 等を行ってきた。せん断圧縮破壊型 RC 梁に対するせん 断補強効果^{3),4)}に関してはU字巻き立て補強による実験 結果および FEM 解析により得られた結果からせん断耐 力算定式の提案を試みた。また、文献 3)では提案算定式 の考え方を踏まえた斜め引張破壊型 RC 梁に対するせん 断耐力算定式も参考として示した。そこで、文献 5)では 斜め引張破壊型 RC 梁に対するせん断耐力算定式の適用 性について補強範囲を変数とした模型実験および FEM 解析により検討した。実験結果より斜め引張破壊となる 供試体に対して提案算定式の適用性を示した。しかし, 側面全域を補強した供試体(DFRCC 補強厚 t/RC 梁の幅 bw:33%)でせん断圧縮破壊が生じ、提案算定式では過 大な安全側(4割程度)の評価となった。そこで,FEM 解析による検討の結果,破壊形式の移行点が補強厚比: 20%程度である可能性を示した。

提案した算定式は,一般的な補修・補強工法で考慮さ れるトラス効果に加えて,RC梁における骨材の噛み合 わせが増大することによる効果も考慮し,各項の単純累 加で評価を行っている。文献5)ではせん断耐力増分量に 対しての検討を行ったが,各累加項目についての検討は 出来ていない。多様な構造物への適用性を踏まえた場合, 累加項目に対する検討は重要となる。そこで,本研究で

*1 大阪市立大学大学院 工学研究科都市系専攻

は文献5)での結果を踏まえて補強厚比を10%として側面 全域を補強した RC 梁の破壊形式が斜め引張破壊である ことを実験により確認の上,実験を再現する FEM 解析 モデルを基準としたパラメトリック解析によりせん断補 強時のせん断抵抗特性を明らかにし,算定式の累加項目 についての検討を行った。その上で,せん断耐力算定式 の修正を行った。

2. 実験概要

実験では斜め引張破壊型 RC 梁となるように a/d=3 とした。破壊形式が移行しない補強厚比:10%として断面 寸法を決定した。また,十分な曲げ耐力を確保するため に引張鉄筋は USD685 (D25)を2本配筋した。無補強(N-0) の供試体概要図を図-1 に示す。無補強供試体に加えて 側面全域を補強した供試体(L-300)を作製した。供試体断 面図を図-2 に示す。載荷方法は載荷点付近における圧 縮応力の集中を避けるために4点曲げ載荷とし,増厚補 強を考慮して RC 梁のみに載荷板を設置している。計測

(学生会員)

^{*2} 大阪市立大学大学院 工学研究科都市系専攻 准教授 博(工) (正会員)

^{*3} 大阪市立大学 工学部都市学科

表-1 DFRCC 配合

水結合材比	繊維混入率	細骨材率		単位量(kg/m ³)								
W/(C+FA)	Vf	S/C	水	早強セメント	フライアッシュ	細骨材	繊維	高性能AE剤減水剤	増粘剤	消泡剤	収縮低減剤	
<%>	<%>	<%>	W	С	FA	S	PVA	SP	VA	EB	SR	
45	2.0	50	451	801	200	401	26.0	10.0	0.39	1.60	10.0	

	我 Z 古住的科特区											
コンクリート				DFRCC				引張鉄筋				
	圧縮強度 N∕mm²	引張強度 N/mm ²	弾性係数 kN/mm ²	ポアソン比 -	圧縮強度 N∕mm²	引張強度 N/mm ²	弾性係数 kN/mm ²	ポアソン比 -	降伏強度 N∕mm²	引張強度 N∕mm²	弾性係数 kN/mm ²	
	46.8	2.98	29.2	0.20	43.2	3.54	13.3	0.21	693	877	191	

主____ 友 插 封 剉 桂 桝

項目は荷重,載荷点変位,圧縮縁せん断スパン内のコン クリートひずみ,純曲げ区間およびせん断スパン内の引 張鉄筋ひずみである。計測概要を図-3に示す。

コンクリートは、呼び強度 30N/mm², スランプ 10cm, 粗骨材の最大骨材寸法 15mm を用いており、DFRCC に ついては配合を表-1 に示す。DFRCC の配合は文献 5) を基準としており、混入繊維は PVA 繊維を使用し、混入 率は 2%である。表-2 にコンクリート、DFRCC および 引張鉄筋の材料特性を示す。DFRCC の引張特性評価は ダンベル型供試体を用いた一軸引張試験により行った。 その際、板厚は補強厚の 15mm と同程度となるように 13 mm とした。DFRCC の応力-ひずみ関係を図-4 に示す。

供試体作製手順として RC 梁を早強コンクリートで打ち込み,6日間の気中養生後,DFRCC 補強部を打ち込んだ。RC 梁と DFRCC 補強部の定着は,RC 梁表面の目荒しのみである。なお,目荒らしを行うために RC 梁打設時に凝結遅延シートを用い,高圧水によってレイタンスを除去し,2~3mm 程度の凹凸面となるようにした。

3. 実験結果

3.1 破壊状況

載荷終了時のひび割れ図を文献 5)での L-300 の結果も 含めて図-5 に示す。なお,破壊側のみを示す。補強厚 比が 33%の場合は載荷点近傍に軽い圧壊が見られたが, 補強厚比が 10%の場合では圧壊が見られなかった。また, すべての引張鉄筋ひずみは降伏を迎えておらず,斜めひ び割れの卓越による斜め引張破壊となった。図-5(b)に おける付着切れは,破壊に伴う局所的な変形によるもの である。

3.2 コンクリートひずみ

荷重-コンクリートひずみ関係を図-6 に示す。どち らの供試体も文献 5)で確認された圧壊の傾向である引張 側にひずみが移行することはなく,破壊に至った。上記 からも補強厚比を10%にすることで斜め引張破壊となる ことを確認できた。

4. FEM 解析による検討

前章で補強厚比を10%にすることで側面全域を補強し た場合でも斜め引張破壊となることを示した。ここでは, 汎用コード FINAL を用いた FEM 解析により実験を再現 する基準モデルを作製し,その上で補強範囲や補強厚比 を変数としたパラメトリック解析によりせん断補強時の せん断抵抗特性を明らかにし,累加項目について検討を 行う。

4.1 解析モデル

解析モデルは図-7に示す様な2次元ハーフモデルと し、引張鉄筋をトラス要素、その他を平面応力要素とし た。モデル化においてコンクリートとDFRCCは同一節 点として剛結させている。また、引張鉄筋とコンクリー ト間も同一節点として剛結させている。材料構成則とし て、コンクリートの圧縮は上昇域および下降域ともに修 正 Ahmad モデル、引張は破壊エネルギーを考慮してコン クリート標準示方書^のに準拠したモデルとした。その際、 要素平均辺長を考慮して導入している。DFRCCの圧縮 は上昇域として Fafitis-Shah モデル、下降域として Dawin-Pecknold モデルとした。DFRCCの引張は図-4に 点線で示した材料試験結果を考慮してトリリニア直線で モデル化を行った。ひび割れに関しては回転ひび割れモ デルを適用し、ひび割れ後のせん断剛性は Al-Mahaidi モ デルにより剛性低下を考慮した。

表-3 N-0, L-300の実験耐力および解析耐力の比較

		67 I C T I I					
名称	実験耐力 A kN	解 析 前 カ B k N	В/А _	実験増分 C kN	解析増分 D kN	D/C -	
N-0	189.0	201.6	1.07	-	-	-	
L-300	277.3	280.2	1.01	88.3	78.5	0.89	

図-9 荷重-コンクリートひずみ関係

4.2 再現解析

N-0, L-300の実験耐力および解析耐力を表-3に示す。 なお,解析耐力は,斜めひび割れ進展に伴い,荷重が明確に低下した点と定義した。耐力および耐力増分の解析 値は,10%程度の差で実験値を評価できた。荷重-変位 関係を実験結果も含めて図-8に示す。図-8より曲げひ び割れ発生による剛性の変化点は異なるが,剛性および 最大荷重時の変位は概ね一致している。荷重-コンクリ ートひずみ関係を実験結果も含めて図-9に示す。コン クリートひずみは実験と解析が同程度であった。よって, 解析モデルは実験によるせん断破壊挙動および耐力を再 現できたものとして本モデルを以降の基準とする。

4.3 耐力算定式

文献 5) においてせん断圧縮破壊に移行した側面全域 を除く補強範囲に対して適用性が示された斜め引張破壊 型 RC 梁に対するせん断耐力算定式を以下に示す。

$$V_u = V_{RC} + V_T + V_w \tag{1}$$

$$V_{RC} = \beta_d \times \beta_p \times f_{vcd} \times b_w \times d \tag{2}$$

 $V_T = 2 \times f_{st} \times t_{st} \times min(h_{st}, \ l_{st}, \ 7d/8)$ (3)

図-11 GO モデル(例:N-O-GO)

$$V_w = \beta_d \times \Delta \beta_w \times f_{dd} \times b_w \times d \tag{4}$$

$$\Delta\beta_w = \alpha_w \times \sqrt[3]{(100p_w^{eq} \times d_w/\underline{d})}$$
(5)

 $d_w = 0.8H - h_{st}/2$ (6)

$$\underline{h}_{st} = h_{st} - 0.2H \tag{7}$$

$$p_w^{eq} = (2t_{st} \times \underline{h}_{st})/(b_w \times d) \times E_{st}/E_s$$
(8)

ここで, V_u:補強後のせん断耐力(kN),

 V_{RC} :RC 梁のせん断耐力(kN), V_{T} :ウェブ部補強による引張抵抗増分(kN), f_{st} : DFRCC の引張降伏強度(N/mm²), t_{st} :DFRCC 補強厚(mm), h_{st} :補強高さ(mm), l_{st} :補強長さ(mm), V_{w} :ウェブ部補強によるせん断耐力増分(kN), f_{vca} : $f_{vcd} = 0.20\sqrt[3]{f'_{cd}}(N/mm^{2}),$ f'_{cd} : コンクリートの設計圧縮強度(N/mm²), f_{ad} : $f_{ad} = 0.19\sqrt{f'_{cd}}(N/mm^{2}),$

β_d:供試体寸法の影響を考慮する係数

 $\beta_d = (1000/d)^{\frac{1}{4}}, \ \beta_p : \sqrt[3]{100p_v},$

 p_v : 引張鉄筋比 $p_v = A_s/(b_w \times d)$, A_s : 引張鉄筋の断面積(mm²), \underline{d} : 補強後の有効高さ(mm), $\Delta \beta_w$:せん断耐力増分を考慮する係数, H: 供試体高さ(mm), b_w :腹部の幅(mm), α_w :ウェブ補強による骨材の噛み合わせ係数, p_w^{eq} : ウェブ補強による等価せん断補強筋比, d_w : 上端からの有効補強区間の重心位置(mm), \underline{h}_{st} : 有効補強高さ(mm), E_{st} : DFRCC の弾性係数(kN/mm²), E_s : 主鉄筋の弾性係数(kN/mm²) である。記号の説明の更なる詳細については文献 3)を 参照頂くこととして割愛させて頂く。

式(1)に示したように、提案算定式は RC 梁のせん断耐 力式 V_{RC} に、 V_T , V_w によって求められるせん断耐力増分 を単純累加することによって評価している。 V_{RC} はコン クリート標準示方書^のに示されるせん断補強筋を用いな い棒部材の設計せん断耐力式である。 V_T の項によって得 られる耐力増分とはトラス効果によって得られる。つま りスターラップなどのせん断補強筋を有する RC 梁にお いてせん断補強筋が受け持つ力を DFRCC が受け持つと 考えることによる。次に V_w によって得られるせん断耐力 増分とは、DFRCC がひび割れ幅を抑制することによっ て RC 梁の斜めひび割れ面における骨材噛み合わせ効果 が増大することによって得られる。

4.4 累加項目の評価方法

各累加項目の算出方法の概念図を図-10に示す。まず, 主たる斜めひび割れが発生する引張鉄筋位置より2要素 上のコンクリート要素から圧縮縁までの要素に対してひ び割れ後のせん断剛性を Gr=0 としたモデルを G0 モデ ルと定義する。G0モデルを図-11に示す。図-10より N-0とN-0-G0に着目すると、その差がRC梁の骨材の噛 み合わせが耐力に影響する増分ΔRC に相当する。 N-0-G0 と L-300-G0 の差が DFRCC 補強によるトラス効 果V_Tとなる。L-300 と L-300-G0 の差から △RC を引いた 量が DFRCC 補強により RC 梁の斜めひび割れ面におけ る骨材の噛み合わせが向上した効果VLとなる。上記のよ うに各累加項目の算出を行い、補強厚比・補強範囲をパ ラメータとしたパラメトリック解析により累加項目の評 価を行う。パラメータ概要を図-12に示す。補強厚比は 10%, 15%, 20%の 3 パターンとした。その際, 実際に は DFRCC の厚さによって DFRCC の引張強度が変化す るため⁷⁾, DFRCC 補強厚を両側合わせて 30mm で一定と して RC 梁の幅を変化させた。また、引張鉄筋比が基準 モデルと同じとなるように引張鉄筋断面積を決定した。 補強範囲は、側面全域・側面引張域および側面圧縮域の 3パターンとした。その際、中立軸位置は曲げ降伏時の 中立軸位置を基準とした。

図-14 修正耐力算定式の概要

4.5 累加項目の評価

h_{st}

算定式および解析による累加項目値を図-13 に示す。 補強厚比によらず、側面全域および側面引張域の累加項 目の内訳は、算定値の大半が骨材の噛み合わせ効果であ るVwとなっているのに対して、解析値の大半はトラス効 果であるVrとなった。また、側面圧縮域では累加項目の 内訳比率は概ね一致したが、補強厚比が 10%になると増 分量自体が無補強の 5%程度となり、非常に効果が小さ い。各補強厚比の補強範囲に着目すると、補強厚比 10% を除いて側面全域と側面圧縮域のVwの増分量が概ね一 致しているのに対して、側面引張域では低下する傾向が 見られた。このことから圧縮域を補強しなければ、骨材 の噛み合わせ効果Vwが小さくなると考えられる。

表-4 修正算定式の耐力増分

	補強厚比(%)									
名称	10			15			20			
	算定	解析	解/算	算定	解析	解/算	算定	解析	解/算	
側面全域	76.9	78.5	1.02	69.6	66.4	0.95	65.5	74.5	1.14	
引張域	57.1	59.2	1.04	52.2	50.6	0.97	49.4	61.8	1.25	
圧縮域	24.0	10.6	0.44	20.6	19.4	0.94	18.7	20.0	1.07	

5. 修正耐力算定式

5.1 耐力算定式の修正

前章において文献5)の耐力算定式では累加項目を正し く評価できないことを示した。ここでは、前章の結果を 踏まえて耐力算定式の修正を行う。修正耐力算定式を図 -14 に示す。 まず, トラス効果 Vr については, 文献 5) および本実験においても概ね斜めひび割れが載荷板端点 から支点板端点に向けて入っていることからその範囲を 有効せん断スパンとして鉛直力に対する有効補強長さと した。さらに、補強高さを考慮するために引張鉄筋図心 位置から圧縮応力の合力の作用位置までの区間に存在す る補強範囲を有効補強範囲とした。次に、骨材の噛み合 わせ効果以については、文献5)の耐力算定式は圧縮強度 によるせん断基準強度をせん断圧縮破壊型に用いるfad を用いていたが,斜め引張破壊型に対応させるために fvcdを用いることとした。また、引張側から補強する場 合, 圧縮域を補強しなければ補強効果が小さくなること を考慮し, 骨材の噛み合わせ係数α_wに補強高さによる低 減効果を導入した。また, 圧縮側から補強する場合は, 圧縮域をすべて補強することを前提とした。

5.2 修正耐力算定式の累加項目値

修正耐力算定式および解析による累加項目値を図-15に示す。また、修正耐力算定式の耐力増分を表-4に 示す。図および表より、修正耐力算定式の累加項目の内 訳は解析値と概ね一致した。耐力増分は10%程度の差で 評価することが可能である。なお、補強厚比:10%、補 強範囲:側面圧縮域の場合、修正耐力算定式で表現でき なかった。ただし、増分量が無補強時の5%であること から補強効果を考慮しない補強量と考えることができる。

	補強厚比 %	供試体名称	実験耐力 A kN	算定耐力 B kN	A/B _	実験増分 C kN	算定増分 D kN	C/D -
		無補強	113.6	96.1	1.18	-	-	-
		側面全域*	231.8	185.6	1.25	118.2	89.5	1.32
	33 文献5)	側面引張域	186.6	154.1	1.21	73.0	58.0	1.26
		側面引張250	186.0	176.6	1.05	72.4	80.5	0.90
		側面圧縮域	147.2	130.6	1.13	33.6	34.5	0.97
	10	無補強	189.0	166.2	1.14	-	-	-
		側面全域	277.3	243.1	1.14	88.3	76.9	1.15

表-5 実験耐力および修正算定耐力の比較

注)*圧壊を伴うせん断圧縮破壊

また,補強厚比が20%で引張側を補強している場合,安 全側の評価となる傾向がある。これは,せん断圧縮破壊 に移行する補強厚比に近づいているためであると考えら れる。

5.3 修正耐力算定式の評価

文献 5)および本実験における実験耐力と式(9)-式(12) により算出した修正算定耐力を比較し、修正耐力算定式 の評価を行う。実験耐力および修正算定耐力のまとめを 表-5 に示す。なお、側面引張 250 は引張側から圧縮域 の半分まで補強をした供試体である。修正耐力算定式を 用いた算定耐力は実験耐力に対して1以上(概ね20%以 下の差)となり、安全側の評価となった。また、耐力増 分は実験増分を安全側に26%程度,危険側に10%程度の 範囲で評価できる。補強厚比:33%の側面引張 250 では 危険側に10%程度の評価となったが、側面引張250と側 面引張域の実験値が同程度であることを考えると側面引 張250の実験値が小さくなった可能性があり、算定が過 大とは言い切れない。また,破壊形式が異なる補強厚比: 33%の側面全域であっても3割程度の安全側の評価であ り, RC 梁の骨材の分布や DFRCC の引張強度のばらつき を考慮すると、十分に有用性がある。上記よりせん断補 強筋を有さない斜め引張破壊型 RC 梁に対して修正算定 式を適用できることを示した。

6. おわりに

斜め引張破壊型 RC 梁を対象に DFRCC による側面増 厚補強(補強厚比:10%)を行い,4 点曲げ載荷実験お よび FEM 解析によりせん断補強時のせん断抵抗特性に ついて検討を行った。得られた結果を以下に示す。

- (1)実験により補強厚比を10%とし、側面全域を補強した 場合、斜め引張破壊となることを示した。
- (2)トラス効果V_Tは、有効補強長さとして有効せん断スパン、補強高さとして有効補強範囲を設けることで評価できることを示した。

- (3)骨材の噛み合わせ効果Vwは、圧縮強度によるせん断基 準強度をfvcdとする。引張側から補強する場合、圧縮 域を補強しなければ補強効果が小さくなることを考 慮して骨材の噛み合わせ係数αwに補強範囲による低 減係数を設けることで評価できることを示した。ただ し、圧縮側から補強する場合は、圧縮域をすべて補強 することを前提とする。
- (4)修正耐力算定式で解析耐力増分を 10%程度の差で評 価できることを示した。ただし、補強厚比が 10%で圧 縮域のみの補強を除く。
- (5)文献 5)および本実験における耐力を修正耐力算定式 で十分に評価できることを示し,修正耐力算定式の有 用性を示した。

謝辞

本研究において共英製鋼株式会社様,住友大阪セメン ト株式会社様,三光株式会社様より,供試体作製にお いて材料のご提供を頂きました。ここに記して,感謝 の意を表します。

参考文献

- 土木学会:複数微細ひび割れ型繊維補強セメン複合材
 料設計・施工指針(案),コンクリートライブラリー
 127,2007
- 2)小笠原哲也,猪木勇至,角掛久雄,大内一:高靭性繊 維補強セメント複合材料(DFRCC)による桟橋梁部へ の増厚曲げ補強効果に関する基礎的研究,コンクリー ト工学年次論文集,Vol.33,No.2, pp.1255-1260, 2010
- 3)大内一,小笠原哲也,角掛久雄:DFRCCのU字型巻 き立てによるせん断補強,土木学会論文集E2, Vol.68, No.4, pp.251-270, 2012
- 4)野崎佑太,角掛久雄,久保英之,大内一:DFRCCによるせん断破壊型 RC 梁のウェブ補強効果に関する実験, コンクリート工学年次論文集, Vol.35, No.2, pp.1405-1410, 2013
- 5)角掛久雄,大宅慧,久保英之:高靭性モルタルを用いたRC梁へのせん断補強効果に関する研究,構造工学論文集,Vol.62A,pp.850-859,2016
- 6)土木学会:2012 年制定コンクリート標準示方書[設計 編],2012
- 7)畝宏樹,猪木勇至,角掛久雄,鬼頭宏明:短繊維モル タルの引張強度に対する板厚の影響,土木学会第67 回年次学術講演会,pp.431-432,2012