論文 採取したコア供試体を用いたバサルト短繊維補強コンクリートの 曲げタフネス評価

井戸 康浩*1・田中 徹*2・仁平 達也*3・笹田 航平*4

要旨:本報告は、バサルト短繊維を使用した短繊維補強コンクリートを対象に柱試験体からコア供試体を採取し、3等分曲げ強度試験を実施し、曲げ靱性係数を評価した。この結果、コア供試体を用いた曲げタフネス試験の荷重-変位曲線は、従来の角柱供試体と比較して、ひび割れ発生後に荷重が大きく増加する傾向にあり、荷重-変位曲線は異なることがわかった。また、供試体の破壊モードは曲げ破壊とせん断破壊が発生し、曲げ破壊で曲げ靱性係数を評価した場合は、実際より小さくなり安全側に評価していると考えられる。 キーワード:曲げタフネス 曲げ靱性係数 コア供試体 角柱供試体 バサルト短繊維

1. はじめに

短繊維補強コンクリートは、ひび割れ分散効果やはく 落防止などを目的として様々な構造物に適用されている ¹⁾。その中で一般的に鉄道構造物等に使用されている短 繊維は、鋼繊維や有機繊維としてポリプロピレン繊維, ビニロン繊維が挙げられる。これらの短繊維は、それぞ れ長所と短所を有しており,鋼繊維では錆びが発生する こと、有機繊維では紫外線劣化する恐れがあるなどの課 題がある。筆者らは無機系材料である玄武岩由来のバサ ルト繊維に着目し、これを原料としたバサルト短繊維補 強コンクリートの開発を行っている²⁾ (写真-1 および 表-1)。バサルト短繊維は、無機系繊維であることから 腐食が生じない、紫外線劣化しにくいことが長所として 挙げられるが、アルカリに対する抵抗性が低いという課 題があった。その課題に対しては、被覆する樹脂を改良 し、耐アルカリ性を向上させた短繊維を開発し、その結 果について報告している³⁾。

バサルト短繊維補強コンクリートなどの繊維で補強し たコンクリートは、ひび割れ分散の効果を期待して使用 するため、その性能を評価する曲げ靱性係数が重要とな る。曲げ靱性係数は、曲げタフネス試験 JSCE-G-552 で は角柱供試体(100×100×400mm)を用いて試験するこ とで求められる。室内試験では、鋼製型枠等を使用でき るが、施工後の実構造物で実施する場合、角柱供試体を 切出すことは、配筋状況などを踏まえるとその採取や加 工が容易ではない等,現実的でないと考えられる。また、 繊維自体が長期間高アルカリ環境下に供されるため、繊 維自体の引張性能の変化、例えば、架橋効果に及ぼす付 着性能や引張強度等が変化している可能性も考えられる。

写真-1 バサルト短繊維

項目	物性等			
被覆樹肌	エポキシ樹脂			
繊維長	40			
換算断面積	0.67			
密度	(g/cm ³)	1.83		
引張強度	(N/mm^2)	1103		
引張弾性率	(kN/mm ²)	27.1		
破断時伸び率	(%)	4.5		

加えて幅の大きなひび割れの発生や進展等,想定しない 変状が発生した場合,これらの原因を把握する必要があ る。すなわち,既設構造物における短繊維補強コンクリ ートの性能評価方法を構築する必要があると考えられる。

そこで,前記したバサルト短繊維補強コンクリートを テストケースとして,実構造物の圧縮強度用試験体の採 取方法として実績のあるコアコンクリートを用いて,円 柱状のコア供試体を用いた曲げタフネス試験^{4),5)}から, 曲げ靱性係数の評価を試みた。本論文は,バサルト短繊 維補強コンクリートの柱試験体を作製し,これからコア 供試体を採取し,3 等分曲げ強度試験を実施し,曲げ靱 性係数の評価を検討した結果を報告する。

2. 実験概要

- 2.1 バサルト短繊維補強コンクリート
 - (1) 使用材料および配合

使用材料を表-2に示す。使用材料は、セメントを普

*1 戸田建設(株) 技術開発センター 社会基盤ユニット 社会インフラチーム 工修 (正会員) *2 戸田建設(株) 技術開発センター 社会基盤ユニット 工修 (正会員) *3 (公財)鉄道総合技術研究所 構造物技術研究部 鋼・複合構造 博士 (正会員) *4 (公財)鉄道総合技術研究所 構造物技術研究部 鋼・複合構造 工修 (正会員) 通ポルトランドセメント,細骨材を陸砂と砕砂の混合と し,粗骨材は砕石とした。バサルト短繊維は,エポキシ 樹脂で被覆した長さ40mm,密度1.83g/cm³の繊維を使用 した。コンクリート配合を表-3 に示す。配合は,水セ メント比を50%,単位水量を175kg/m³,空気量を4.5%, 細骨材率を52.0%。とした。バサルト短繊維の添加率は 1.0vol.%とし,体積の外割添加とした。

(2) コンクリート製造

コンクリートは、実機ミキサにより製造し、1m³を2 バッチ(計2m³)練り混ぜた。バサルト短繊維以外の材 料をミキサへ投入しコンクリートを練り混ぜた後、ミキ サ上部の投入口からバサルト短繊維を投入した。バサル ト短繊維の投入は、1m³分の18.3kgを1分間でファイバ ーボールが発生しないようにほぐしながら投入した。コ ンクリートは投入後45秒間練混ぜてから排出し、アジテ ータ車に積込み試験場所まで運搬した。

(3) 試験項目

試験項目を表-4 に示す。フレッシュ性状は、スラン プ,空気量、コンクリート温度の試験に加えて、今回繊 維を使用しているため、目視によりファイバーボール有 無や繊維の分散性を確認した。硬化コンクリートは、圧 縮強度、静弾性係数、割裂引張強度、曲げタフネス、コ ア強度およびコア供試体による曲げタフネスについて試 験を実施した。曲げタフネスの供試体は、100×100× 400mmの角柱とし、コア供試体による曲げタフネスは、 ϕ 100×400mmの円柱とした。供試体の養生は標準水中 養生とし、各試験はいずれも材齢 28 日で実施した。

柱試験体を図-1 に示す。柱試験体の寸法は,鉄道構 造物等設計標準・同解説 コンクリート構造物^のを参考に, ブリーディングの影響を受けるコンクリートの打込み高 さ(高さ300mm以上)を考慮し,断面800×800mm,高 さ1300mmとし,通常の打込み方法を想定して,**写真**-2に示すようにバイブレータで適宜締固めを行い,2層 でコンクリートを型枠へ打込んだ。コア供試体は上側と 下側の2箇所から水平方向に採取し,圧縮強度はφ100 ×200mm(上側3本,下側3本の計6本),曲げタフネス 試験はφ100×400mmで上側4本,下側4本の計8本に 切断し整形した。 **表**-4 試験項目

表一2 使用材料

分類 (記号)	使用材料
水 (W)	上水道水(つくば市)
セメント (C)	普通ポルトランド(密度 3.15g/cm ³ , 住友大阪
	セメント製)
細骨材 1 (S1)	陸砂(行方産,表乾密度2.58g/cm ³ ,粗粒率2.50)
細骨材 2 (S2)	砕砂(佐野産,表乾密度2.69g/cm ³ ,粗粒率3.10)
粗骨材 (G)	砕石(2005, つくば産, 表乾密度 2.69g/cm ³ ,
	粗粒率 2.69, 実積率 60%)
繊維 (Fb)	バサルト短繊維(エポキシ樹脂被覆、長さ
	40mm, 密度 1.83g/cm ³)
混和剤 (Ad)	高性能 AE 減水剤

表一3 配合表

W/C (%)	s/a (%)	単位量(kg/m³)				Ad	バサルト 短繊維		
		w	С	S1	S2	G	(C×%)	添加率	添加量
			0	51				(vol.%)	(kg)
50	52	175	350	630	280	863	1.3	1.0	18.3

図一1 柱試験体

写真-2 柱試験体の打込み状況

分類	試験項目	規格等	詳細					
	スランプ	JIS A 1101	目標スランプ 18.0±2.5cm					
フレッ	空気量	JIS A 1128	目標空気量 4.5±1.5%					
シュ	コンクリート温度	JIA A 1156						
1生1人	繊維分散性	目視	ファイバーボール等の有無を確認					
硬化性状	圧縮強度	JIS A 1108	養生:標準水中,材齡:28日					
	静弹性係数	JIS A 1149	圧縮強度試験と同時に実施					
	割裂引張強度	JIS A 1113	養生:標準水中,材齡:28日					
	曲げタフネス	JSCE-G 552	養生:標準水中,材齢:28日,N=5					
	コア強度	_	柱試験体を作製し、材齢28日でコア採取および強度試験を実施					
	曲げタフネス(コア供試体)	_	柱試験体を作製し, 材齢 28 日でコア採取および曲げタフネス試験を実施					

2.2 コア供試体による曲げタフネス試験

コア供試体による曲げタフネス試験を図-2に、支点 および載荷点の形状を図-3に、コア供試体による曲げ タフネス試験の状況を写真-3に示す。コア供試体によ る曲げタフネス試験は、既往の文献^{4),5)}を参考に、供試 体は直径 100mm, 長さ 400mm の供試体を用いた。試験 は、3等分点載荷試験とし、変位の測定点は、図に示し た位置に変位計測用のターゲットの治具を接着剤で張り 付けて、載荷荷重と同時に変位を測定した。載荷点およ び支持点の形状は、既往の文献より90度とした。なお、 その他の形状として、図-3に示すようにコア供試体の 形状に合わせた半円の弧や、通常の棒状(180 度)など が考えられるが、半円の弧の場合は、治具の作製が難し いことやコア採取の精度によっては治具に合わないこと, 棒状の場合は、支点および載荷点で局部的な破壊が起こ る場合があること、供試体が円柱であるため試験時に安 定しないことから,90度とした。載荷速度は,JSCE-G-552 に準拠し、ひび割れ発生までは荷重制御で毎秒 0.06± 0.04N/mm²となるよう調整し、ひび割れ発生後は変位制 御で毎分スパンの 1/500~1/3000 の範囲とした。 JSCE-G-552 の曲げタフネス試験では、スパンの 1/150 の 2mm までの変位を測定するが、今回は測定可能な範囲の 8.0mm まで測定し、荷重-変位曲線を把握した。

3. 実験結果および考察

3.1 フレッシュ性状および硬化性状

(1) フレッシュ性状

フレッシュコンクリート試験の結果を表-5 に示す。 試験結果はそれぞれ、スランプ 20cm、空気量 4.2%、コ ンクリート温度 23℃であり、いずれの目標値も満足する 結果となった。短繊維は、定性的ではあるが目視により ファイバーボールも見られず、均一に分散していること を確認した。

(2) 硬化性状

各強度試験の結果を表-6 に、コア強度試験の結果を 表-7 に示す。標準水中した供試体の材齢 28 日の圧縮強 度は 49.4N/mm², 静弾性係数は 29.1kN/mm²に対して、コ ア強度は 34.0N/mm², 静弾性係数は 26.4kN/mm²となり、 コアの方が強度は 15N/mm², 静弾性係数は 3kN/mm²程度 が小さくなった。これは、柱打込み時期が 11 月であり、 当日の気温が 17℃程度であるなど、外気温が低く養生の 影響を大きく受けたためと考えられる。コアの採取位置 に着目すると、上側は 33.5N/mm²、下側は 34.6N/mm²、 平均値で 34.0N/mm²となった。柱試験体の上下による強 度の差はほとんどなく、ブリーディングなどの影響によ る強度低下は確認されなかった。静弾性係数と密度も同 様の傾向であった。このことから、養生条件により差は

図-2 コア供試体による曲げタフネス試験

図-3 支点および載荷点の形状(文献⁴⁾より抜粋)

写真-3 コア供試体による曲げタフネス試験の状況 表-5 フレッシュコンクリート試験の結果

項目	試験値			
スランプ (cm)	20.0			
空気量 (%)	4.2			
コンクリート温度 (℃)	23(外気温 17℃)			
繊維分散性	均一に分散			

表-6 各強度試験の結果

項目	試験値				
压縮強度 (N/mm ²)	49.4				
静弹性係数 (kN/mm ²)	29.1				
割裂引張強度 (N/mm ²)	3.62				
曲げ強度 (N/mm ²)	5.62				
曲げ靱性係数 (N/mm ²)	5.02				
※ 養生方法:標準水中,試験材齢:28日					

表-7 コア強度試験の結果

項目	上側	下側	平均值
コア強度 (N/mm ²)	33.5	34.6	34.0
静弹性係数 (kN/mm ²)	26.6	26.1	26.4
密度 (kg/m³)	2306	2311	2309

見られるものの,バサルト短繊維補強コンクリートを打 込んだ柱試験体内においては,高さ方向に対して,圧縮 強度やヤング係数にほとんど差はなく,同等であること を確認した。

3.2 コア供試体による曲げタフネス試験

コア供試体による曲げタフネス試験の結果を図-4 お よび図-5 に、コア供試体の曲げタフネス試験状況を写 真-4 に示す。比較対象として、角柱供試体の曲げタフ ネス試験の結果を図-6 に示す。

コア供試体の結果と角柱供試体を用いた結果を比較 すると、角柱供試体では、15~20kN でひび割れが目視に より確認された後、ややばらつきは見られるが、荷重は 変位 2.0mm までほぼ横ばいに維持またはやや低下する のに対して、コア供試体では7~11kN程度でひび割れが 発生した後、12~22kN まで荷重が増加し、2.0~3.0mm をピークに荷重が低下する傾向にあった。これは、断面 の形状の相違に起因する。角柱供試体と円柱供試体の模 式図を図-7 に示す。短繊維コンクリートの引張性能が 向上するのは、コンクリートにひび割れが発生し、ひび 割れ箇所に短繊維が架橋することに起因する。角柱の場 合は断面が一様であるため、ひび割れの進展に関わらず 繊維補強の効果は一定である。一方、円柱の場合は高さ 方向に断面積が異なり、コア中心部の面積が大きく、上・ 下部の面積が小さい。そのため、ひび割れが発生した直 後は、繊維補強の効果が小さく、載荷点の変位が大きく なり供試体の中心までひび割れが進展すると繊維補強の 面積が大きくなるため、架橋する繊維の量が増加し、荷 重が増加すると考えられる。

次に、コア供試体ごとで比較した。コア供試体を用い た曲げタフネス試験の結果を表-8 に、試験後の供試体 破断状況および破断面を**写真-5**,6 に示す。表中にコア 供試体の破断位置の判定を示した。破断位置が純曲げ区 間以外の箇所で発生した供試体は、上側-4、下側-2、3 であった。上側-4 においてひび割れ発生の過程を観察 すると、はじめに純曲げ区間でひび割れが発生し、ひび 割れがある程度進展した後、荷重は大きく増加した。そ の後、純曲げ区間外にひび割れは発生し、荷重は大きく 低下した。下側-2、3 も同様な傾向を示し、純曲げ区間 外にひび割れが複数本発生した。これは、バサルト短繊 維の分布状況によるところが大きいと考えられ、**写真-**6 に示すようにバサルト短繊維は断面内に均一に分散し ていないため、純曲げ区間に発生したひび割れ発生箇所 に短繊維が多く配置されている場合には、繊維補強の効

写真-4 コア供試体を用いた曲げタフネス試験状況

採取 位置 No.		ていてが生ました	昌士	曲げ強度 (N/mm ²)			动蛇侍里				
	No	びい割れ	版八 荷重 (kN)			変位 2.0mm まで		変位 4.0mm まで		1 1000111100	
	INO.	先生间重 (kN)		ひび割れ 発生荷重時	最大 荷重時	試験値	平均值	試験値	平均值	*1	
上側	1	8.40	11.91	4.29	6.08	5.20	5.20	5.37	5.42	0	
	2	7.88	13.77	4.02	7.03	5.67		5.80		0	
	3	8.37	11.34	4.29	5.81	4.73		5.10		0	
	4	10.85	20.81	5.55	10.65	(7.79)		(8.51)		×	
下側	1	8.01	15.12	4.10	7.74	5.73	5.60	6.45	6.45		0
	2	9.55	21.50	4.88	10.98	(7.39)		(9.05)	6.45	×	
	3	9.73	18.59	4.96	9.47	(6.73)		(6.93)		×	
	4	8.69	15.10	4.44	7.72	5.46		6.44		0	

表-8 コア供試体を用いた曲げタフネス試験の結果

※1 供試体の破断位置が純曲げ区間の場合は「○」,純曲げ区間外の場合は「×」。 ※2 曲げ靱性係数の平均値は,破断位置判定が×の場合を除いた値。

果が大きくなり,純曲げ区間以外を含めた他の箇所にひ び割れが複数発生すると考えられる。角柱供試体を用い た場合では,そのような傾向は見られることもあるが, 本検討においては,コア供試体では8本のうち3本で発 生していることから,円柱供試体の形状が結果に影響を 与えている可能性がある。これらの供試体の荷重-変位 曲線を見ると,その他の供試体と比較してひび割れ発生 後の最大荷重が大きくなった。上側-4,下側-2,3は, 写真-5 に示すように,純曲げ区間外にひび割れが発生 していることから,純曲げ区間の破壊(曲げ破壊)よ りせん断スパン区間での破壊(せん断破壊)が卓越した と考えられる。

コア供試体の曲げ靱性係数の算定にあたり,曲げ強度 は式(1)に示した一般的な弾性式により算出した。

$$\delta_b = \frac{16Pl}{3\pi d^3} \tag{1}$$

曲げ靭性係数を算出する上で、せん断破壊モードの結 果を含めるのは適切ではないことから、曲げ破壊モード である試験体の結果から曲げ靭性係数を算出するのが適 当であると考える。なお、破壊モードの差異は、配合条 件や載荷条件,供試体の形状に起因すると考えられるた め、今後、これらを踏まえた載荷方法を検討する必要も あると考えられる。曲げタフネスと曲げ靱性係数の算出 は, JSCE-G-552 と同様にスパンの 1/150 の変位 2.0mm ま でと、かつ荷重のピークを確認した以降の 4.0mm までの 荷重-変位の面積から算出した。せん断破壊モードと判 定された試験体は参考値として記載した。試験体数は少 ないが曲げ靱性係数の平均値を見ると、変位 2.0mm まで は上側は 5.20N/mm², 下側は 5.60N/mm² であり, 変位 4.0mm までは上側は 5.42N/mm², 下側は 6.45N/mm²とな り、最大20%程度の差が見られた。図-6の曲げ靱性係 数のばらつきを考慮し,供試体個々のばらつきや,破壊 モードの異なる供試体を踏まえると、柱試験体の高さ方 向の曲げ性能は概ね同等であると推察される。また、曲

写真-5 試験後の供試体破断状況

写真-6 試験後の供試体破断面

げ破壊モードとなった曲げ靱性係数の最大値は、変位 2.0mm で 5.8N/mm²、変位 4.0mm で 6.5N/mm²程度であっ た。目視による評価ではあるが、ひび割れ発生荷重が大 きい試験体はせん断破壊モードとなっていた。このこと から、純曲げ区間とせん断スパン区間での繊維量の差異 や分散状況が破壊モードに影響を及ぼす可能性があると いえる。 せん断破壊モードと判定されたコア供験体の荷重-変位関係(図-4の破線)は、ひび割れ発生荷重以降も、 曲げ破壊モードと判定されたコア供試体の荷重-変位関 係よりも同一変位における荷重値が大きくなっており、 仮にせん断破壊モードとならず載荷が継続した場合、他 の曲げ破壊モードのコア供試体よりも曲げ靭性係数が高 くなることが推測される。そのため、せん断破壊モード のコア供試体の曲げ靭性係数を考慮していない、曲げ破 壊モードのコア供試体のみの平均値で算出した曲げ靭性 係数は小さくなっていると考えられる。

また,断面形状の違いから,角柱試験体と荷重-変位 関係が異なることが明らかとなった。そのため,短繊維 補強コンクリートの性能の経時変化を評価する場合には, 相対的な評価として角柱供試体から得られた曲げ靭性係 数と直接比較することは困難であり,硬化後初期のコア 供試体の測定結果を踏まえて評価する必要があると考え られる。

以上より,前記したバサルト短繊維補強コンクリート をテストケースとして,コアコンクリートを採取し,曲 げタフネス試験により,短繊維補強コンクリートの引張 特性を評価する手法について検討した。異なる破壊モー ドが混在するため,載荷条件や形状等に改良の余地はあ ると考えるが,短繊維補強コンクリートの引張特性を評 価する手法の有効性が示唆された。

4. まとめ

バサルト短繊維補強コンクリートを用いて,コア供試 体による曲げタフネス試験を実施し,曲げ靱性の評価を 試みた結果,以下のことが明らかになった。

(1) コア供試体を用いた曲げタフネス試験は、従来の角 柱供試体と荷重-変位曲線と比較し、ひび割れ発生 後に荷重が大きく増加し、最大荷重時の変位が大き くなる傾向が見られ、角柱試験体とコア試験体の荷 重-変位関係が異なることが分かった。

(2) コア供試体の破断状況より,純曲げ区間で破壊した モードと,せん断スパン区間で破壊したモードが混 在した。供試体軸方向の繊維量や分散状況が破壊モ ードを決定する可能性が考えられる。そのため,異 なる破壊モードが混在している場合,純曲げ区間で 破壊したモードの供試体から算出した曲げ靭性係数 は,実際の値よりも小さな値となっている可能性が あり,曲げ靭性係数を小さく評価していることが考 えられる。

参考文献

- 例えば、南邦明、下津達也、斉藤雅充:北陸新幹線 第4千曲川橋りょう(連続合成桁)の架設、橋梁と 基礎、pp.41-47, 2012
- 仁平 達也,田中 徹,田中 章,村井 和彦:バ サルト短繊維を用いた短繊維補強コンクリートの ひび割れ性状,コンクリート工学年次論文集, Vol.38, No.2, pp.1297-1302, 2016
- 石平 達也, 笹田 航平, 田中 徹, 井戸 康浩: バサルト短繊維の耐アルカリ性に関する一考察, 土 木学会第 72 回土木学会年次学術講演会, V-547, pp.1093-1094, 2017
- 4) 森野 奎二,西野 昭:コンクリートの円柱供試体 による曲げ強度試験方法について,愛知工業大学, 愛知工業大学研究報告 B 通号 14, pp.243-253, 1979
- 5) 天明 敏行,池水 貴史,林 俊斉,谷倉 泉,尾 原 祐三:円柱供試体を用いた曲げ強度試験方法に おける強度評価式,材料, Vol.64, No.10, pp815-821, 2015.10
- 6) 鉄道総合技術研究所:鉄道構造物等設計標準・同解
 説 コンクリート構造物,2004.4