論文 プレキャストコンクリート強度打ち分け RC 梁に関する実験的研究

金川 基^{*1}·濱田 聡^{*2}·竹中 啓之^{*2}·高橋 孝二^{*1}

要旨:プレキャストコンクリート梁を用いる場合,梁をハーフプレキャスト部材とし,梁の上端とスラブを 現場で打設することが考えられる。プレキャスト部コンクリートを設計の梁強度とし,梁上部分をスラブと 同強度でコンクリートを打設できれば,施工効率が良くなるが,同一断面の梁に異なるコンクリート強度が 存在することになり,その評価は複雑となる。そこで,異なるコンクリート強度を持つ梁断面の適切な評価 法を検討するため,構造実験を実施し,その評価法を検討し,最大耐力を梁せいの高さ方向の割合に応じた 等価コンクリート強度を用いた梁のせん断強度式により求めることで,安全側に評価できることを確認した。 キーワード:プレキャストコンクリート,梁,等価コンクリート強度

1. はじめに

筆者らは、超高層プレキャスト鉄筋コンクリート造建 築物の設計施工システムの研究開発を行ってきている^{1),} ²⁾。本研究では施工の合理化を目的として、梁断面内の 上下で異なるコンクリート強度を有するプレキャスト鉄 筋コンクリート梁(図-1 参照)について、梁上部分を スラブと同強度でコンクリートを打設できれば、施工効 率が良くなるが、同一断面の梁に異なるコンクリート強 度が存在することになり、その評価法が問題となる。

それゆえ,異なるコンクリート強度を持つ梁断面の試 験体について,梁下部(PCa 部)には高強度コンクリート を用い,現場打ちする梁上部(Top 部)のコンクリートはス ラブと同一強度とし,主にコンクリートの影響が問題と なるせん断強度についてせん断破壊させる試験体を計画 するとともに,変形性能を確認するための試験体を計画 し,耐震性能を確認するための実験を行った。

2. 試験体

試験体諸元を表-1 に,試験体形状を図-2 に,材料 試験結果を表-2 および表-3 に示す。試験体は実大の約 1/2 スケールとした梁部材6体である。

実験変数は,全試験体の PCa 部のコンクリート設計基 準強度 Fc を 60N/mm²として, Top 部のコンクリート強 度を, スラブを想定してそれより低強度コンクリートと

図-1 異なるコンクリート強度を有する PCa RC 梁

表一1 試験体諸元								
試験体		nt01	nt02	nt03	nt04	nt05	nt06	
断面形状		-200 -200			202.5	200 200		
梁断面:B×D[mm]		300 × 400						
L[m	m]	1600						
せん断ス	パン比	2.0						
スラブ厚さ:t[mm]		75						
コンクリート圧縮強度	Top部	60	30	48	30	30	30	
Fc[N/mm ²]	PCa部							
梁配筋(種別)	主筋[pt]	1 段筋:5-D19 (SD980) 2段筋:3-D23 (GS) [2.71]				4+2-D19 (SD590) [1. 70]		
	スタラップ[pw]	4-D6 (UHY685) @60 [0. 71]					4-D6 (UHY685) @75 [0. 57]	
スラブ筋(種別)		D6 (SD295) @100						
割裂補強筋(種別)		2-D10 (UHY685) @60					2-D10 (UHY685) @75	
すべり防止筋(種別)		2-D10 (UHY685) @60					2-D10 (UHY685) @75	
破壊モード		せん断破壊					曲げ破壊	

*1 西松建設株式会社 (正会員)

*2 戸田建設株式会社 (正会員)

図-2 試験体形状

表-2	コンク	リー	ト材料強度

試験体		FC	σ _B	σ _t	$Ec[\times 10^4$
		[N/mm ²] [N/mm ²]		[N/mm ²]	N/mm ²]
nt01	Top 部	60	63.3	3.48	4.11
11101	PCa 部	60	52.2	3.26	3.27
m±02	Top 部	30	32.5	2.32	3.07
1102	PCa 部	60	57.7	3.28	3.30
m±02	Top 部	48	48.6	3.40	3.71
1105	PCa 部	60	57.5	3.84	3.43
	Top 部	30	32.2	2.50	3.17
nt04	PCa 部	60	55.3	3.43	3.38
m±05	Top 部	30	33.0	2.39	3.16
1105	PCa 部	60	58.4	3.31	3.34
nt06	Top 部	30	33.4	2.66	3.28
1100	PCa 部	60	59.7	2.97	3.45

表一3 鉄筋材	料強度
---------	-----

鋼		σy	σu	$Es[\times 10^5$	
使用部位	使用部位 径 規格		[N/mm ²]	[N/mm ²]	N/mm ²]
梁主筋	D19	590 級	637	811	1.93
梁1段筋	D19	980 級	1060	1150	1.90
梁2段筋	D23	ゲビンデ	1070	1140	2.14
せん断補強筋	D6	685 級	715	896	1.98
スラブ筋	D6	295 級	437	543	1.95
割裂防止筋	D10	(95 /11	916	002	2.11
すべり防止筋	010	083 极	810	992	2.11

して変化させるとともに、PCa 部の掘り込み深さ,角状 になっている PCa 部の立ち上がり(以下,立ち上がり部) の有無,破壊モードとした。梁断面は,高強度コンクリ ートとなる PCa 部が梁断面を占める割合を 50~70%程度 とした。また,片側には厚さ 75mm のスラブが取り付い ている。これは,本評価法が梁の両側または片側にスラ ブが取付くことを前提としており,その影響を安全側に 評価するためである。

梁のせん断破壊を先行させるため、高強度梁主筋を配 筋していることから、梁主筋に沿った割裂破壊が懸念さ れたため、主筋の割裂破壊を抑制する目的で、割裂補強 筋として D10(UHY685)を配している。また、梁の水平打 ち継ぎ面は、「現場打ち同等型プレキャスト鉄筋コンクリ ート構造設計指針(案)・同解説(2002)」により水平打ち継 ぎ部のすべり破壊が生じないようにすべり防止筋として D10(UHY685)を配している。ここで、水平打ち継ぎ面の すべりに対する抵抗要素には、スターラップとすべり防 止筋を考慮した。各試験体についての概要を以下に記す。

- 試験体 nt01(せん断破壊型)は、基準試験体として Top 部および PCa 部ともに Fc を 60N/mm²とした。
- (2) 試験体 nt02(せん断破壊型)は、試験体 nt01に対して Top 部の Fc を 30N/mm²とした。
- (3) 試験体 nt03(せん断破壊型)は、試験体 nt01に対して Top 部の Fc を 48N/mm²とした。
- (4) 試験体 nt04 (せん断破壊型) は,試験体 nt01 に対して Top 部の Fc を 30N/mm²とし,PCa 部の掘り込み 深さを 62.5mm 浅くして梁断面の PCa 部が占める割合を 70%程度とした。
- (5) 試験体 nt05(せん断破壊型)は,試験体 nt01に対して Top 部の Fc を 30N/mm²とし,立ち上がり部を無くして水平打ち継ぎと同じ高さとした。
- (6) 試験体 nt06(曲げ破壊型)は、せん断破壊型との比較対象として、曲げ破壊型を計画した。Top 部の Fc は 30N/mm²とした。

3. 加力方法

実験装置の概要を図-3 に示す。加力は梁試験体上下 に加力スタブを設置し,試験体を90度回転させてモーメ ント分布が逆対称モーメントになるように正負交番繰り 返し載荷を行った。

加力スケジュールを図-4 に示す。加力の制御は梁部 材角 R で行い, R=±1/800, ±1/400, ±1/200, ±1/100, ±1/50, R=±1/33, ±1/25 [rad]を加力する載荷スケジュ ールとし, 1/800 [rad]では正負 1 回繰り返し,その他のサ イクルでは正負 2 回繰り返した。ただし,加力の途中で 長期許容せん断力および短期許容せん断力に達した場合 はその点をピークとし,除荷を行って1 サイクルとした。

4. 実験結果

各試験体の梁せん断力—部材角関係および最終破壊

状況を図-5 に示す。図中の等価せん断耐力計算値は、 後述する梁断面のコンクリート強度を等価コンクリート 強度 σ_{eq} として算出して、鉄筋コンクリート造建物の靱 性保証型耐震設計指針・同解説³⁾に従って求めた梁のせ ん断強度 Q_{eq} を表記している。

また,曲げ破壊型の試験体 nt06 については,鉄筋コン クリート構造計算規準・同解説に従って求めた曲げ終局 耐力計算値を示す。各試験体の破壊経過を以下に記す。 (1) 試験体 nt01(せん断破壊型)

試験体 nt01 は, R=1/200rad(1)加力時に梁端部からおよ そ 1D (D:梁せい)の範囲にせん断ひび割れが発生し, 1/50rad(1)ピーク時にせん断補強筋が降伏した。その後 1/33rad(1)加力途中で図-5 に示すせん断ひび割れと梁下 端主筋に沿った割裂ひび割れが同時に拡大し,変形が大 きく進んで耐力低下を生じた。

(2) 試験体 nt02(せん断破壊型)

試験体 nt02 は, R=1/400rad(1)加力時に梁端部からおよ そ 1D の範囲にせん断ひび割れが発生し, 1/50rad(1)ピー ク時にせん断補強筋が降伏して最大耐力に至った。

その後のサイクルでは、圧縮縁コンクリートの圧壊と せん断ひび割れの拡大により、最大耐力の 57%まで耐力 低下した。

図-5 各試験体の梁せん断カー部材角関係および最終破壊状況

(3) 試験体 nt03(せん断破壊型)

試験体 nt03 は, R=1/400rad(1)加力時に梁端部からおよ そ 1D の範囲にせん断ひび割れが発生し,正側ではせん 断補強筋降伏後の 1/33rad(1)ピーク時に最大耐力を記録 し, 1/33rad(2)サイクル時には最大耐力の 64%まで耐力が 低下した。

(4) 試験体 nt04(せん断破壊型)

PCa部の掘り込みが浅い試験体 nt04 は, 掘り込み深さ が標準でコンクリート強度が同じ試験体 nt02 に近い履 歴ループおよび破壊性状を示した。ただし, 最大耐力お よび耐力低下の度合いは, コンクリートの等価強度が高 い試験体 nt04 の方が良好であった。

(5) 試験体 nt05(せん断破壊型)

立ち上がり部がない試験体 nt05 は, R=+1/50(1)rad ピ ーク到達時にせん断補強筋が降伏した際, ややスリップ して耐力低下を生じた。1/33rad(2)サイクル時には最大耐 力の 52%まで耐力が低下した。等価強度がほぼ等しく立 ち上がり部がある試験体 nt02 と比較すると,最大耐力や 破壊性状に対する立ち上がり部の影響は, ほとんど見ら れなかった。

(6) 試験体 nt06(曲げ破壊型)

試験体 nt06 は, R=1/50rad(1)ピーク手前で梁主筋端部 が降伏及び梁端部コンクリートが圧壊し, 1/50rad(1)ピー ク時に最大耐力に至った。±1/25rad 加力時においてもせ ん断補強筋は降伏しておらず,最大でもそのひずみは 2000μ程度であった。

5. ひずみゲージ設置状況

試験体 nt01 から試験体 nt06 における梁主筋, せん断 補強筋およびすべり防止筋に貼付したひずみゲージ設置 状況を図-6 に示す。ここで、梁主筋については、図中 ▲で示した梁材端部にひずみゲージを設置している。

また, すべり防止筋は, 梁上端主筋に U 型部を引掛け て設置し, PCa 部へは 15db (db:鉄筋径)の直線定着と しており, 梁上部側に設置したひずみゲージを上, プレ キャスト側に設置したひずみゲージを下として, 梁上部 および梁下部にそれぞれ貼付した。

6. 梁主筋ひずみ分布

試験体 nt01 から試験体 nt05 の梁主筋のひずみ分布を 図-7 に示す。図には,梁材端部の位置における正側の 各サイクルピーク時の値を示している。

図より, せん断破壊を計画した試験体 nt01 から試験体 nt05 では, 耐力低下時に変形が大きく進んだ試験体 nt01 以外の試験体では, 梁主筋は降伏ひずみ 5600 μ に達しな かった。また, 梁主筋に SD590 材を用いた曲げ破壊型の 試験体 nt06 は, R=1/100 rad から 1/50rad に向かうとき

図-7 各試験体の梁主筋ひずみ分布

に梁端部にて降伏ひずみ 3000 µ に達した。

7. せん断補強筋ひずみ分布

ーク時の値を示している。 図より,試験体 nt01 は, R=1/50rad で一部が降伏し, 梁がせん断破壊するとともにすべてのせん断補強筋が降

伏した。試験体 nt02 から試験体 nt05 では, R=1/50rad で せん断補強筋が降伏した。曲げ破壊試験体 nt06 は最大耐 力時のせん断補強筋ひずみが 2000 μ 程度であった。

8. すべり防止筋ひずみ分布

試験体 nt01 から試験体 nt06 のすべり防止筋のひずみ 分布を図-9 に示す。図は、図-6 のすべり止め C の位 置における正側の各サイクルピーク時の値を示している。 図より、ひずみの値は、梁上部とプレキャスト部で大差 はなく、最大で 1000 µ から 1500 µ 程度のひずみとなった。

9. 実験値と計算値の比較

実験値と計算値の比較を**表**-4に示す。ここで, σ_{eq}は, 図-10 に示す梁せいの高さ方向の割合に応じて式(1)よ り求めたコンクリートの平均強度(等価コンクリート強 度)である。

$$\sigma_{eq} = \left(\frac{\sigma_{Top} \times d_{Top} + \sigma_{PCa} \times d_{PCa}}{d}\right) \tag{1}$$

表-4より, せん断破壊型の試験体について, 最大耐力を梁せいの高さ方向の割合に応じた等価コンクリート 強度を用いた梁のせん断強度式により求めることで, 安 全側に評価できることがわかる。

 σ_{eq} :等価コンクリート強度 σ_{Top} : Top 部のコンクリート強度 σ_{PCa} : PCa 部のコンクリート強度 d:梁せい d_{Top} : Top 部の梁せいの高さ d_{PCa} : PCa 部の梁せいの高さ

図-10 等価コンクリート強度の算出方法

10. コンクリート強度の評価

梁におけるトラス機構の圧縮応力の釣合に基づき,実 験結果からコンクリートの斜め圧縮力(σ t)を推定する。 釣合式で横補強筋の引張力($aw \cdot \sigma wy$)は実験結果のひ ずみゲージ値より算出する。トラス機構によるせん断力 負担分: *Vt* は,式(2)となる。

$$V_t = \sum a_w \sigma_{wv} = p_{we} \sigma_{wv} b_e j_e \cot \phi$$
(2)

斜め圧縮力横補強筋の引張力,主筋の付着力の釣合より,

$$(\Sigma a_w \sigma_{wy})^2 (1 + \cot^2 \phi) = (\sigma_t b_e \lambda j_e \cos \phi)^2$$
(3)

(2)および(3)より *o*_tについて展開して,式(4)を得る。

$$\sigma_t = (1 + \cot^2 \phi) (p_{we} \sigma_{wy}) / \lambda$$
(4)

各試験体について, 横軸に等価コンクリート強度, 縦 軸に実験値より算出したコンクリートの圧縮強度をプロ ットしたものを図-11 に示す。図中には, 参考文献 3) によるコンクリートの有効係数を乗じて強度を低減させ たコンクリート強度の曲線と近似直線を示す。

図より,コンクリート強度をすべて PCa 部で評価する とトラス機構のコンクリート斜め圧縮力は靱性指針式の 強度を下回るものが見られるが,等価コンクリート強度 で評価すると良い対応を示すことがわかる。

11. まとめ

梁断面内の上下で異なるコンクリート強度を有する プレキャスト鉄筋コンクリート梁部材の繰り返し載荷実 験を実施し,以下の知見を得た。

・せん断破壊する試験体を計画し、せん断破壊を確認した。また、最大耐力や破壊性状に対する立ち上がり部の影響は、見られなかった。

- ・せん断破壊した試験体は,耐力低下時に変形が大きく 進んだ試験体 nt01 以外の試験体では,梁主筋は降伏ひ ずみ 5600 μ に達しなかった。
- ・せん断破壊を計画した試験体は, R=1/50rad にてせん 断補強筋が降伏ひずみに達した。
- ・すべり防止筋のひずみ値は、梁上部とプレキャスト部
 で大差なく、最大で1000 µ から1500 µ 程度であった。
- ・最大耐力を梁せいの高さ方向の割合に応じた等価コン クリート強度を用いた梁のせん断強度式により求める ことで、安全側に評価できることを確認した。
- トラス機構によるコンクリートの斜め圧縮力を実験値 から推定した結果、等価コンクリート強度で評価する と良い対応を示すことがわかった。

	等価コン		実験値	実験値計算値		字野店 /	
試験体	クリート	$\cot \phi$	昆士霸士	等価せん	土となる時	天映 恒/	
	強度	*1)	取八回刀	断強度 ^{*2)}	曲り強度	訂昇他	
	$\sigma \text{ eq}[\text{N/mm}^2]$		Qm[kN]	Qeq[kN]	Qfu[kN]	Qm/Qeq	
nt01	57.7	1.64	857	764		1.12	
nt02	45.1	1.42	725	707		1.03	
nt03	53.1	1.68	859	749	1058	1.15	
nt04	47.4	1.45	739	721		1.02	
nt05	45.7	1.45	741	711		1.04	
nt06	46.1	_	425	562	404	1.05	

表-4 実験値と計算値の比較

*1)cot φは、せん断破壊した試験体の実験時最大耐力より推定した値 *2)計算値は、ヒンジ領域の回転角 Rp=0、コンクリートの有効係数 ν = ν 0 としている

図-11 実験より求めた σ_t と等価コンクリート強度の関係

参考文献

- 木村他、プレキャストコンクリート合成梁構造の開発その1~3、日本建築学会大会学術講演梗概集 (近畿)、構造IV、pp.217-222, 2014.9
- 金川他、プレキャストコンクリート合成梁構造の開発 その4~5、日本建築学会大会学術講演梗概集 (東海)、構造IV、pp.503-506, 2015.9
- 3) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説,1999.9