論文 梁曲げ降伏が先行する T 字形接合部の構造性能に及ぼす柱主筋定着 位置の影響

平田 延明^{*1}·田附 遼太^{*1}

要旨:柱主筋の定着位置が異なるT字形接合部試験体2体の構造性能を比較した。一方は梁上端筋上部で, 他方は梁上端筋下部で,柱主筋を定着した。両試験体とも梁曲げ降伏が先行するように計画した。実験結果 から,梁曲げ降伏が先行する場合でも,柱主筋定着位置により,破壊状況,および最大耐力が大きく変化す ることがわかった。また,柱主筋定着位置にかかわらず,荷重—変形関係は強いスリップ性状を示した。柱 梁接合部内部における梁主筋の平均付着応力度—層間変形角関係にもスリップ性状が見られ,梁上端筋の平 均付着応力度も,柱主筋定着位置により差異が見られた。

キーワード:T字形接合部,梁曲げ降伏先行,定着位置,平均付着応力度

1. はじめに

建物の最上階やセットバック階に位置する上部に柱の 無い柱梁接合部(以下,T字形接合部と表す)を対象と した構造実験は,柱主筋の定着性能を確認することを目 的としたものが多いため,柱曲げ降伏先行のものが多く, 梁曲げ降伏先行として計画されたものはほとんど見られ ない。しかしながら,設計実務上はT字形接合部が梁曲 げ降伏先行として計画されることも少なくない。

梁曲げ降伏先行として計画された T字形接合部を対象 とした研究には、筆者らの既報¹⁾や市川らの研究²⁾があ る。これらの研究では、荷重一変形関係が強いスリップ 性状を示すことや、梁上端筋が降伏しないことが明らか になっている。こうした構造特性には、梁上端筋の付着 性状が影響していると推定される。しかしながら、梁曲 げ降伏先行の T字形接合部における梁上端筋の付着性状 については、これらの既往研究では十分検討されていな い。

一方,**T**字形接合部やL形接合部の構造性能改善のため,益尾らは柱梁接合部上部に低い立ち上がりを設け,

	試験体	No.7	No.8		
	$B_c \times D_c$	500mm × 500mm			
柱	主故	12-D22	16-D19		
	工机	(pg=1.9%·SD490)	(pg=1.8%·SD390)		
	半 故	4-D10@100			
	' ' ''''	(pw=0.57%·SD295A)			
	主筋定着	梁上端筋	梁上端筋		
	位置	上部	下部		
	定着長さし。	320mm	420mm		
梁	$B_b \times D_b$	350mm × 400mm			
	主筋	4-D16(pt=0.65%·SD345)			
	ちげこな	4-D6@100			
	めはり肋	(pw=0.41%·SD295A)			
	梁主筋の	毎日	有り		
	機械式継手	兼し			
柱梁	かんざし筋	4-D6×5組	4-D6×4組		
接合部	横補強筋	2-D10×5組	2-D10×7組		

表一1 試験体諸元

柱主筋を梁上端筋上部で定着する手法を提案している³⁾。 しかしながら,柱主筋を梁上端筋上部で定着したT字形 接合部についても,梁曲げ降伏先行で計画された研究例 は無い。

以上を踏まえて本研究では、柱主筋を梁上端筋上部で 定着し、かつ、梁曲げ降伏先行で計画した T 字形接合部 の構造実験を実施し、既報¹⁾に示した梁上端筋下部で柱 主筋を定着した試験体と構造性能を比較することで、柱 主筋定着位置の違いによる影響を明らかにする。また、 梁曲げ降伏先行の T 字形接合部の構造特性に影響を及ぼ すと考えられる梁上端筋の付着性状についても検討する。

2. 実験計画

試験体は、柱梁接合部上部に低い立ち上がりを設け、 柱主筋を梁上端筋上部で定着した T 字形接合部(No.8)で ある。図-1 に試験体の配筋図を示す。表-1 には試験 体の諸元を示す。表-1 には、比較対象として、既報¹⁾ の試験体 No.7 も併せて示す。No.7 は柱主筋を梁上端筋 下部で定着したものである。

両試験体とも、柱主筋は機械式定着とした。また、No.8 においては、実施工を考慮して柱梁接合部内部に梁主筋 の機械式継手を設けた。両試験体は、柱主筋機械式定着 の位置、柱主筋径及び本数、梁主筋の機械式継手有無、 およびかんざし筋と称する補強筋の本数が異なる。かん ざし筋は、柱梁接合部内部の梁上端筋に対する補強筋で ある。柱主筋の定着長さ l_d は、No.7 が l_d =320mm(=0.8D_b、 D_b:梁せい), No.8 が l_d =420mm(=1.05D_b)である。表-2 には、試験体に使用した鉄筋およびコンクリートの材料 強度試験結果を示す。

試験体は梁曲げ降伏が先行するよう,梁曲げ強度時の 応力に対して,各部の強度が十分な余裕度を有するよう に計画した。表-3 に,梁曲げ強度時の各部応力に対す

*1株式会社 長谷エコーポレーション 技術研究所第一研究開発室 修士(工学) (正会員)

る諸強度の余裕度を示す。なお,**表-3**に示す諸強度の 算定においては,**表-2**に示す材料試験結果を用いた。

表-4には, RC 規準による必要定着長さと試験体の定 着長さを示す。両試験体とも定着長さは,必要定着長さ を上回る。なお,必要定着長さは,梁曲げ強度時の柱主 筋存在応力に対して算出した。

図-2には加力方法を示す。試験体を90度回転した状態で,柱と梁の反曲点位置をピン支持として,柱にせん 断力を載荷した。以下では,実験時に上に位置した梁を 上梁,下に位置した梁を下梁と表す。加力履歴は,層間 変形角 R=±2.5, 5, 10, 15, 20, 30, 40×10⁻³rad を各 2 回ずつ正負繰り返した。

T字形接合部の実験においては、柱せん断力の反力と して梁に軸力が作用する。本実験においては、柱せん断 力が上方向となる正加力時には、上梁の軸力が柱せん断 力と等しくなるように梁軸力ジャッキを制御した。また、 柱せん断力が下方向となる負加力時には、梁軸力ジャッ キが荷重0となるように制御した。すなわち、正負いず れの加力時においても、上下いずれかの梁軸力が0とな るように載荷した。

					衣 - 3	試験14名	う部の強	芟					
	各部強度				梁曲げ強度時応力		各部強度の余裕度						
	梁	柱	接合部	柱主筋	梁通し主筋	接合部	柱主筋	梁通し主筋	柱梁	接合部	柱主筋	梁通し主筋	
	曲げ	曲げ	せん断	定着	付着	せん断力	引張力	付着応力度	曲げ	せん断	定着	付着	
	bQmu	cQmu	jVu	cTau	Тu	jVd	cTmu	тd	強度比	余裕度	余裕度	余裕度	
	kN	kN	kN	kN	N/mm ²	kN	kN	N/mm ²	-	-	-	-	_
No.7	207	422	1162	203	7.3	650	104	6.1	2.0	1.8	2.0	1.2	
Nio 9	212	244	1070	172	70	665	0.4	6.2	1.6	1.0	10	1.2	

梁曲げ強度:RC規準による。柱せん断力として表記。柱曲げ強度:文献5)の多段配筋柱の曲げ強度略算式による。接合部せん断強度:文献6)による。 柱主筋定着強度:文献7)の益尾・窪田式による。梁通し主筋付着強度:文献6)による。柱主筋引張力:平面保持仮定に基づく断面解析による。

なお、図-2の加力装置においては、両側の梁せん断 力が等しいと見なせるため、試験体の耐力は、軸力が0 となる側の梁の曲げ強度により決まると考えられる。こ のため, 表-3 に示す梁曲げ強度の評価においては, 梁 軸力を考慮していない。

3. 実験結果

試験体 No.8 のひび割れ状況を図-3 に示す。また, No.7, No.8 両試験体の荷重—変形関係を図-4 に示す。 図-4 には梁曲げ強度計算値を破線で示す。なお、2 章 に述べた理由により、梁曲げ強度の算出においては、梁 軸力を考慮していない。

また,各部の破壊状況を写真-1に示す。なお,試験 体 No.7の破壊経過の詳細は、既報¹⁾を参照されたい。

3.1 破壊経過

試験体 No.8 は、R=1/400rad のサイクルで、梁、柱の 順に曲げひび割れ(①,○囲み数字は図-3中の数字に

(1)No.7 写真-1 R=1/50rad 時 破壊状況

対応,以下同様)が発生し,R=1/200~1/100rad にかけて, 梁,柱の曲げひび割れが増加,伸展した。R=1/100radの サイクルでは、接合部せん断ひび割れ(②)が発生し、 R=1/67rad のサイクルでは柱主筋の機械式定着板から水 平方向にひび割れ(③)が伸展した。R=1/33rad のサイ クルでは、機械式定着板近傍のひび割れが増加して、接 合部上面にも伸展した。R=1/25rad のサイクルでは、梁 下端の曲げおよび曲げせん断ひび割れが顕著に拡幅する とともに,梁端部上端のかぶりコンクリートが圧壊した。

No.8は、機械式定着板周囲のひび割れを除き、柱梁接 合部のひび割れは顕著には拡幅せず、梁下端の曲げひび 割れの拡幅および梁端部のかぶりコンクリート圧壊が顕 著であった。これより, No.8 は梁曲げ破壊したと判断し た。

No.7は、梁下端筋が降伏した後、引張側となる柱主筋 定着位置に生じた水平方向のひび割れが、上端圧縮とな る側の梁端部に伸展した。その後、このひび割れが拡が り、梁端部および接合部内で、梁上端筋のかぶりコンク

No.8 の荷重-変形関係は,梁下端筋が降伏した R=1/200rad 付近で明確に剛性低下したが、これ以降も柱 せん断力は上昇し、R=1/25rad のサイクルまで、耐力低 下は見られなかった。なお、梁上端筋は R=1/67rad から 1/33rad にかけて降伏した。また、柱主筋は降伏しなかっ た。荷重-変形関係は強いスリップ性状を示した。

R=1/25rad のサイクルの耐力は, 正加力時 Q=312kN, 負加力時 Q=280kN であった。No.8 の最大耐力実験値を

○ 梁曲げCr

O接合部せん断Cr

◇梁上端筋隆伏

◇梁下端筋降伏

×最大耐力

□接合部横補強筋降伏

NOB 1/50 表-3 に示す梁曲げ強度計算値と比較すると、実験値/計 算値=1.47(正), 1.32(負)であった。

No.7 についても,梁下端筋が降伏した R=1/200rad 付 近で顕著に剛性低下した。R=1/50rad 時に最大耐力とな ったが,R=1/25rad 時まで耐力低下は緩やかであった。 最大耐力実験値と梁曲げ強度計算値の比は,1.15(正), 1.02(負)であった。また,No.8 同様,柱主筋は降伏しな かった。

3.3 梁主筋のひずみ及び引張力

図-5 には、両試験体の梁端部における梁主筋ひずみ -層間変形角関係を示す。下端筋については、両試験体 とも R=1/200~1/100rad にかけて降伏ひずみを上回った。 上端筋は、No.7 は降伏しなかったが、No.8 は R=1/50rad 時に降伏ひずみの 95%程度に達した。

次に、図-6 には両試験体について、柱梁接合部内部 における梁主筋の引張力分布を示す。ここで梁主筋の引 張力は、鉄筋の応力一ひずみ関係を完全弾塑性と仮定し、 ひずみ測定値にヤング係数と主筋の公称断面積を乗じる ことで評価した。 下端筋については、両試験体とも、概ね同様の分布傾 向を示しており、R=1/200~1/100rad にかけて、概ね降伏 耐力に達した。上端筋については、両試験体とも引張力 の勾配は下端筋より小さく、また、No.7の方が No.8 よ り R=1/100rad 時の引張力の上昇が小さかった。なお、両 試験体とも R=1/100rad 時には圧縮側梁端部においても、 引張に変化した。

3.4 梁主筋の付着応力度

図-7 には、両試験体の柱梁接合部内における梁主筋 平均付着応力度 τ ave と層間変形角の関係を示す。上端 筋は R=1/100rad まで、下端筋は梁端部のひずみ測定値が 降伏ひずみに達するまでを示す。梁主筋の平均付着応力 度 τ ave は、梁主筋のひずみ測定値から求めた柱梁接合 部両端における梁主筋応力の差を、梁主筋周長および接 合部内の梁主筋付着長さで除すことで評価した。

両試験体とも、付着応力度は、上端筋よりも下端筋の 方が大きい値を示した。上端筋については、No.7 では R=1/200rad 付近から、平均付着応力度が低下し始めたの に対して、No.8 では R=1/100rad までは平均付着応力度

の低下は見られなかった。下端筋については, No.8の方 がやや大きい値ではあるが,両試験体は概ね同様の傾向 を示した。いずれもループ形状は逆S字形となり,スリ ップ性状を示した。

3.5 試験体各部の挙動

図-8 には,層間変形に対する梁,柱,接合部の変形 割合を示す。両試験体とも,層間変形の60%前後が梁の 変形によることがわかる。層間変形角の増加に伴い,梁 の変形割合が大きくなる傾向が見られた。ただし,梁の 変形には,梁主筋の抜け出しの影響も含まれる。また, 接合部の変形割合は,R=1/100~1/67rad時には,No.7が 20%程度,No.8 は 10%程度となった。

実験結果の検討

写真-1 に示す No.7 と No.8 における破壊状況の比較 により,梁曲げ降伏が先行する T 字形接合部において, 梁端部から接合部にかけてのひび割れ状況が大きく異な ることがわかった。

両試験体は,柱主筋定着位置のほか,柱主筋径及び本数,コンクリート強度及び接合部横補強筋等,定着性能 に影響を及ぼしうる諸因子が異なる。一方,表-3に示 した両試験体の柱主筋定着強度の余裕度は,梁曲げ強度 時の存在応力に対して 1.8~2.0 倍であり,両試験体とも 計算上は十分な余裕度を有すると言える。 以上を踏まえ、本章では、定着強度の評価において考 慮されない要因として、柱主筋の定着位置に着目する。 本実験においては、柱主筋定着位置の差異によりひび割 れ状況が変化することで、主に(1)最大耐力(梁の曲げ強 度)、(2)試験体の変形性状、(3)接合部内における梁主筋 の付着性状に影響を及ぼしたと考えられる。

4.1 最大耐力(梁の曲げ強度)への影響

梁主筋下部で柱主筋を定着した No.7 においては,機械 式定着板からのひび割れが,梁上端筋に沿って梁端部に 伸展し,梁上端筋のかぶりコンクリートが剥離した。こ れにより梁端部で梁せいが縮小され,応力中心間距離も 小さくなったと見なされる。

一方,梁主筋上部で柱主筋を定着した No.8 においては, 接合部上部に低い立ち上がりを有するため,機械式定着 板からのひび割れが梁端部には達しなかった。このため 梁上端筋のかぶり部は剥離せず,梁端部における応力中 心間距離は No.7 よりも大きかったと考えられる。この点 が両試験体の最大耐力に差異が生じた一要因と考えられ る。

4.2 変形性状への影響

柱主筋定着位置からのひび割れ伸展状況の差異により, 接合部の損傷にも差異が生じた。写真-1より, No.8の 接合部の斜めひび割れは, No.7と比較して本数も少なく, 損傷の程度は小さいと言える。このため, No.8の接合部

せん断変形成分は No.7 よりも小さく, その分, 梁変形成 分が増加したと考えられる。

4.3 接合部内における梁主筋の付着性状への影響

図-7 において,梁上端筋の平均付着応力度一層間変 形角関係では,柱主筋定着位置により,差異が見られた。 柱主筋を梁主筋下部で定着した No.7 では,機械式定着板 からのひび割れが梁上端筋に沿って伸展したため,梁上 端筋の付着応力度が No.8 よりも早期に低下し始めたと 考えられる。ただし,両試験体の梁主筋の付着応力度の 差異には,継手小口の支圧抵抗など,機械式継手の影響 も含まれる。

なお、既報¹⁾では、かんざし筋量を No.7 の約 2.3 倍と した試験体と No.7 の構造性能を比較し、かんざし筋量は 荷重一変形関係、ひび割れ状況及び梁主筋のひずみ性状 には顕著な影響を及ぼさないことを示した。このことか ら、No.7 と No.8 のかんざし筋量の差異による梁上端筋 の付着応力度への影響は大きくないと推察される。

一方,柱主筋の定着位置に関わらず,両試験体とも接 合部内での梁主筋平均付着応力度の実験値は, 靭性指針 に示される通し主筋の付着強度(式(1))計算値を下回っ た。表-5に,梁主筋の平均付着応力度実験値と計算値 の比較を示す。式(1)は,十字形接合部の応力状態を模擬 した要素実験⁸⁰に基づく実験式である。よって,T字形 接合部における付着強度の評価には適合していない可能 性がある。T字形接合部における適切な付着強度評価式 が求められる。

$$\tau_u = 0.7 \left(1 + \frac{\sigma_0}{\sigma_B} \right) \sigma_B^{2/3} \tag{1}$$

ここに、の₀:柱の軸応力度、の_B:コンクリート圧縮強度 また、両試験体とも、平均付着応力度—層間変形角関 係はスリップ性状を示した。これより、接合部内での梁 主筋の付着劣化が、荷重—変形関係のスリップ性状の— 要因と考えられる。ただし、接合部内での梁主筋の付着 性状には、梁軸力の載荷方法が影響を及ぼした可能性も 考えられる。本実験では、上下の梁いずれかの軸力が柱 せん断力と釣り合うように載荷したが、実際の架構内で は柱の両側の梁がそれぞれ軸力を負担すると推定される。 実架構内のT字形接合部における梁軸力の分布を解析的 に評価し、これに対応した載荷条件で、梁主筋の平均付

表-5 梁主筋平均付着応力度 実験値と計算値の比較

		実験値	計算値			
		平均付着応力度	式(1) 付着強度			
		т ave ^ж	Тu			
		N/mm ²	N/mm ²			
No.7	上端筋	1.2	7.2			
	下端筋	2.6	7.5			
No.8	上端筋	2.1	7.0			
	下端筋	3.1	1.0			

※R=1/100rad以下の範囲での最大値

着応力度を確認する必要がある。

5. まとめ

本研究では,柱主筋の定着位置が異なる梁曲げ降伏先 行で計画した T 字形接合部試験体の構造性能を比較し, その特性を確認した。本研究から得られた結論は以下に まとめられる。

- (1) 柱主筋の定着位置により, 接合部から梁端部におけ るひび割れ状況が大きく変化した。
- (2) 柱主筋を梁上端筋上部で定着した試験体は,梁主筋 下部で定着したものと比較して,梁曲げ強度が増加 した。
- (3) 柱主筋の定着位置に関わらず、荷重一変形関係は強いスリップ性状を示した。
- (4) 柱主筋を梁上端筋上部で定着した試験体の方が,接 合部内での梁上端筋の平均付着応力度が大きい値 を示した。
- (5) 柱主筋の定着位置の差異によるひび割れ状況の変 化が,試験体の最大耐力,変形性状,及び梁主筋の 付着性状に影響を及ぼした。

参考文献

- 平田延明,田附遼太,入江貴弘:梁降伏先行で計画 された RC 造 T 字形柱梁接合部の構造性能に関する 実験的研究,日本建築学会大会学術講演梗概集,C-2, pp.497-500,2017.8
- 市川覚,李日兵,真田靖士, Bah Alpha Oumar Bagou: 機械式定着を用いた T 形柱梁接合部の実験,コンク リート工学年次論文集, Vol.38, No.2, pp.619-624, 2016.7
- 田川浩之,堂下航,足立将人,益尾潔:機械式柱主 筋・外定着による RC 造最上階 T 形,L 形柱梁接合部 の実験,GBRC, Vol.36, No.1, pp.32-39, 2011.1
- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説(2010),2010
- 5) 国土交通省国土技術政策総合研究所,国立研究開発 法人建築研究所監修:2015 年版 建築物の構造関係 技術基準解説書
- 6) 日本建築学会:鉄筋コンクリート造建物の靭性保証
 型耐震設計指針・同解説,1999
- 7) 日本建築総合試験所:機械式定着工法設計指針(2010 年改定), 2010
- 8) 藤井栄,村上秀夫,山田稔明,森田司郎:高強度鉄 筋コンクリート柱・梁接合部における梁通し筋の付 着性状,コンクリート工学年次論文集, Vol.13, No.2, pp.483-488, 1991.6