論文 格子鋼板筋を配置したMGC床版の耐荷力および耐疲労性の検証

新田 裕之*1・水口 和彦*2・阿部 忠*3・塩田 啓介*4

要旨:本研究は,鉄筋に替わる格子鋼板筋(MG)を配置したコンクリート床版(MGC)の耐荷力および耐疲労 性を評価したものである。実験では,MGC 床版の耐荷力性能に関しては走行荷重実験を行い,耐疲労性の評価に おいては輪荷重走行疲労実験を実施した。その結果,MGC 床版と同等な寸法および材料特性値を有する RC 床版 の最大耐荷力と同等な結果を得た。また,耐疲労性においても等価走行回数より,RC 床版とほぼ同等の結果が得 られた。さらに,格子鋼板筋は工場で製作されることから組立ての時間が大幅に短縮され,施工の合理化・省力 化が図られる材料であることから,道路橋床版の鉄筋に替わる材料として有用であると判断できる。 キーワード:RC 床版,MGC 床版,格子鋼板筋,最大耐荷力,耐疲労性

1. はじめに

近年,建設現場における建設技能労働者の不足が深刻 な問題となっている。とくに、コンクリート構造物の建 設では、鉄筋の加工・組立を行う鉄筋工事に関わる技能 労働者が不足している。また、コンクリート構造物の施 工においては合理化・省力化が図られている。しかし、 鉄筋の加工・組立工事は人力に頼らざるを得ないのが現 状であり、合理化・省力化を図るためにはプレキャスト 化が望まれている」。このような背景の中で、鉄筋組立 のプレキャスト化の1例として、 縞鋼板や鋼板をレーザ で格子状に切断し、主筋および配力筋が一面形成となる 格子鋼板筋が開発²⁾された。この格子鋼板筋は、コンク リート床版やはり材、ボックスカルバートなどの新設構 造や補強筋としての適用を目的としたものである。格子 鋼板筋は、工場で製作されることから切断加工後はエポ キシ塗料や亜鉛メッキの塗装が可能であり、塩害対策に も有効な材料である。また、部材寸法に併せて折り曲げ 加工も可能であり、施工現場においては組立のみの工法 である。よって、格子鋼板筋はプレキャスト化が図れる 材料であり施工における省人化、工期の大幅短縮が図ら れるなど施工の合理化・省力化、さらには労働力の不足 を補う材料となる。既往の研究 "では、エポキシ系塗装 を施した格子鋼板筋を用いて耐荷力性能および耐疲労性 について押抜きせん断耐荷力および S-N 曲線式との整 合性を検証し, RC 床版と近似することを報告した。

そこで本研究では、防錆材に亜鉛メッキ塗装を施した 格子鋼板筋を配置した床版(以下,MGC床版とする) の耐荷力性能および耐疲労性の評価を行った。耐荷力性 能については走行荷重実験、耐疲労性の評価については 輪荷重走行疲労実験を実施した⁴⁵⁾。供試体はモデル化 した RC 床版と同様の条件で製作した MGC 床版の2タ イプを製作し,RC 床版の耐荷力および耐疲労性を基準 に MGC 床版の性能を評価した。

2. 使用材料および供試体概要

2.1 供試体概要

本研究に用いる供試体は,基準となる RC 床版供試体 RC-R, RC-F と同一条件で製作した 2 タイプの MGC 床 版供試体 MGC-A, MGC-B を用いた。なお,供試体 RC-R および供試体 MGC-A は既往の研究結果である³⁰。また, RC 床版供試体 RC-R, RC-F は同条件であるが, MGC 床版供試体の MGC-A と MGC-B は, 圧縮筋の配置方法, 防錆方法および試験体の製作日が異なるものである。

2.2 使用材料

(1) RC床版およびMGC床版

RC 床版供試体のコンクリートには, 普通ポルドラン ドセメントと 5mm 以下の砕砂および 5mm ~ 20mm の 砕石を使用した。コンクリートの設計基準強度は 2012 年改訂の道路橋示方書・同解説⁶⁰(以下,道示とする) の規定に基づいて 24N/mm² 以上となるよう配合した。 鉄筋には, SD295A, D10を用いた。

次に, MGC 床版のコンクリートは, RC 床版と同様の配合条件とした。なお, MGC 床版には材質 SS400 で

表-1 RC床版およびMGC床版の材料特性値

	コンクリート	鉄筋および格子鋼板筋			
供試体	圧縮強度	降伏強度	引張強度	弹性係数	
	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN/mm ²)	
RC床版 (RC-R)	32.0	370	511	200	
RC床版 (RC-F)	33.2	384	526	200	
MG床版(MGC-A)	33.2	337	442	200	
MG床版(MGC-B)	34.5	337	442	200	

*1 日本大学大学院 生産工学研究科博士後期課程(学生会員)
*2 日本大学 生産工学部土木工学科准教授 博士(工) (正会員)
*3 日本大学 生産工学部土木工学科教授 博士(工) (正会員)
*4 JFE シビル(株) 社会基盤事業部

図-2 供試体寸法および鉄筋配置

製作した格子鋼板筋を配置した。ここで,RC 床版およ び MGC 床版供試体に用いたコンクリートおよび鉄筋・ 格子鋼板筋の材料特性値を表-1に示す。なお,MGC 床 版コンクリートの圧縮強度は製作時に製作したテストピ ース 3 体と試験供試体から 60mm×120mm のコア採取 した試験体との平均値である。

(2) 格子鋼板筋の寸法および付着強度

格子鋼板筋には、材質 SS400,厚さ 9.0mm の縞鋼板 を用いた。ここで、格子鋼板筋の材料特性を表-1,形状 寸法および縞鋼板の縞形状の詳細を図-1に示す。また、 格子鋼板筋を使用する場合には、縞鋼板の突起(長さ 36mm,間隔 40mm)および格子鋼板筋の加工において 2mm の突起を 9mm ごとに設け、異形鉄筋と同等の付着 性能を有するようにした。なお、付着強度については格 子鋼板筋を用いた引抜試験を行い、その結果を表-2とし て報告している⁷。一般鋼板に亜鉛メッキを塗装した格 子鋼板筋の付着強度の平均は 3.11N/mm²,縞鋼板にエポ キシ系樹脂を塗装した付着強度の平均は 2.65N/mm²,異 形鉄筋 (SD295A,D13)の付着強度の平均は 2.99N/mm² である。よって、本供試体に用いた格子鋼板筋はともに 異形鉄筋と同等の付着強度を有する結果が得られている。

2.3 供試体概要

(1) RC床版供試体

本実験に用いた供試体の寸法は、道示の規定に基づい

て設計し,その 1/2 モデルとした。ここで, RC 床版供 試体の寸法および鉄筋配置を図-2(1)に示す。

供試体寸法は,全長 1,470mm,支間 1,200mm,床版 厚 130mm とした。鉄筋は複鉄筋配置とし,主鉄筋に D10 を 100m 間隔で配置し,主筋の有効高を 105mm,配力 筋の有効高を 95mm とした。また,圧縮側には引張鉄 筋量の 1/2 を配置し,有効高は軸直角方向は 25mm,軸 方向は 35mm である。

(2) MGC床版供試体

MGC 床版供試体の寸法は,全長,支間,厚さは RC 床版と同様である。格子鋼板筋の形状および格子間寸法 は図-2(2),(3)に示すように,RC 床版と同様に引張側 の主筋および配力筋の格子間寸法は 100mm×100mm と し,有効高は 105.5mm とした(図-1(1))。また,圧縮 側には引張鋼材量の 1/2,すなわち格子間寸法は 200mm×200mm とした(図-1(2))。断面寸法は,厚さ 9.0mm,幅 8.0mm,断面積は 72mm² とし,付着力を高 めるために 9mm 間隔ごとに 2mm の突起を設ける構造 とした。ここで,A タイプの供試体(図-2(2))は,圧 縮側の格子鋼板筋の配置を軸直角方向の床版中央を挟ん で 200mm 間隔で配置(A'=28.8mm²)し,防錆材にエポ キシ樹脂を塗布した。また,Bタイプの供試体(図-2(3)) は床版中央から 200mm 間隔で配置(A'=36mm²)し, 防錆材には亜鉛メッキを塗布した。

3. 走行荷重実験に関する結果および考察

3.1 走行荷重が及ぼす最大耐荷力に関する概要⁴⁾

RC 床版に走行荷重が作用した場合の最大耐荷力, す なわち押抜きせん断耐荷力に関する実験方法として, 阿 部らは,輪荷重を1走行ごとに増加し, 1走行維持した 最大荷重を最大耐荷力とし, この最大荷重を押抜きせん 断耐荷力として耐荷力評価式を提案している。そこで本 MGC 床版の最大耐荷力の評価においても同様の実験を 行い評価することとした。

3.2 走行荷重実験

走行荷重実験における走行範囲を図-2に示す。走行荷 重実験は床版供試体上面を橋軸方向に1走行させる実験 である。本実験における走行範囲は,床版中央から軸方 向に450mm,すなわち1走行900mm走行させる実験で ある。荷重は,1走行ごとに10kNずつ増加させる段階 荷重載荷とした。なお,たわみの増加が大きくなった後 は5.0kNずつ増加した。最大耐荷力は本実験方法におけ る1走行を維持した最大荷重とする。また,走行荷重実 験におけるたわみの計測は床版中央,ひずみの計測は床 版中央に配置した主鉄筋および格子鋼板筋とする。

3.3 走行荷重実験における最大耐荷力

走行荷重実験より得られた各供試体の最大耐荷力の結 果を**表-4**に示す。

(1) RC床版供試体

RC 床版供試体の走行荷重実験における最大耐荷力 PmaxRc は,供試体 RC-R1 が 172.5kN, RC-R2 が 171.5kN となり,最大耐荷力の平均は 172.0kN である。この RC 床版の最大耐荷力 PmaxRc を基準に,MGC 床版の最大耐 荷力 PmaxMGC を評価する。

(2) MGC床版供試体

A タイプの供試体 MGC-A-R1, R2 床版の走行荷重実 験における最大耐荷力 P_{maxMGC} は,それぞれ 165.0kN, 170.0kN となり,平均値は 167.5kN である。RC 床版の 最大耐荷力と比較すると 97%程度となっており,若干 下回っているが,材料特性値の差を考慮するとほぼ同等 であると思われる。

次に, B タイプの供試体 MGC-B-R1, R2 の走行荷重 実験における最大耐荷力 Pmax.MGC はそれぞれ 165.5kN, 175.7kN となり,最大耐荷力の平均は 170.6kN で, RC 床版供試体の最大耐荷力と同等の結果となった。

以上より,エポキシ系塗装および亜鉛メッキ塗装した 格子鋼板筋を配置した MGC 床版は,同一寸法および鉄 筋量を配置した RC 床版の最大耐荷力と同等の耐荷力を 有することが明らかとなった。

3.4 鉄筋および鋼板格子筋の荷重とひずみの関係

RC 床版および MGC 床版供試体の支間中央の主鉄筋 および格子鋼板筋の各走行荷重ごとの荷重とひずみの関

表-3 走行荷重実験による最大耐荷力

供試体	コンクリート の圧縮強度	最大耐荷力 (P _{max})	最大耐荷 力の平均	耐荷力比	
DARATI	(N/mm ²)	(kN)	(kN)	$(P_{max.RC}/P_{max.MGC})$	
RC-R1	22.0	172.5	172.0		
RC-R2	32.0	171.5	1/2.0		
MGC-A-R1	22.2	165.0	167.5	0.07	
MGC-A-R2	55.2	170.0	107.5	0.97	
MGC-B-R1	24.5	165.5	170.6	0.00	
MGC-B-R2	54.5	175.7	170.6	0.99	

図-3 鉄筋および格子鋼板筋の荷重とひずみの関係

係を図-3に示す。

鉄筋の降伏ひずみは表-1に示す材料特性値より算出す ると, RC-R 供試体は 1,850×10⁶ (=370N/mm²/200kN/mm²) である。また,格子鋼板筋の降伏ひずみは 1,685×10⁶ (=337N/mm²/200kN/mm²) である。

(1) RC床版供試体

供試体 RC-R1 の荷重とひずみの関係は図-3に示すように、荷重 155kN 付近までは荷重の増加に対したわみの増加傾向は、比較的線形的な挙動を示している。主鉄筋の降伏ひずみ 1,850×10⁶ に達した荷重は 120kN 付近である。最大耐荷力 170kN 作用時のひずみは 3,810×10⁶ である。また、供試体 RC-R2 も同様な増加傾向を示している。鉄筋の降伏ひずみに達した荷重は 125kN 付近である。最大耐荷力 170.4kN 時のひずみは 4,020×10⁶ である。

(2) MGC床版供試体

A タイプの供試体 MGC-A-R1 の荷重とひずみの関係 は図-3より,荷重 150kN 付近までは,たわみは比較的 線形的な挙動を示している。主筋が降伏ひずみ 1,920×10⁶ に達した荷重は 110kN 付近である。最大耐荷力 165kN 作用時のひずみは 5,800×10⁶ である。また,供試体 MGC-A-R2 の荷重とひずみ関係も供試体 MGC-A-R1 と 同様な増加傾向を示している。

降伏ひずみに達した荷重は 120kN 付近であり,最大 耐荷力 170.0kN 作用時のひずみは 5,700×10⁶ である。

次に, B タイプの供試体 MGC-B-R1, MGC-B-R2 とも に, A タイプの供試体とほぼ同様の増加傾向を示してお り, 格子鋼板筋が降伏ひずみ 1,920×10⁶ に達した荷重は

図−4 荷重とたわみの関係

115kN 付近である。供試体 MGC-B-R1 の最大耐荷力 165.5kN 作用時のひずみは 5,920×10⁶ である。供試体 MG-A-R2 の最大耐荷力 175.7kN 作用時のひずみは 5,260×10⁶ である。

以上より, RC 床版に走行荷重が作用した場合の鉄筋 が降伏した荷重は 120kN, 125kN である。また, MGC 床版の格子鋼板筋が降伏ひずみに達した荷重は 110 ~ 120kN 付近で,ほぼ同程度の荷重で降伏に至っている。

3.5 荷重とたわみの関係

RC 床版および MGC 床版中央の荷重とたわみの関係 を図-4に示す。

(1) RC床版供試体

RC 床版供試体 RC-R1, RC-R2 の荷重とたわみの関係 は図-4に示すように,供試体 RC-R1 の鉄筋が降伏に至 った荷重 120kN 付近までは比較的線形的な増加を示し ており,荷重 120kN 時のたわみは 4.1mm である。最大 耐荷力 170kN 作用時のたわみは 11.5mm である。また, 供試体 RC-R2 の鉄筋が降伏した荷重 125kN 時のたわみ は 3.9mm,最大耐荷力作用時 170.4kN でたわみは 11.4mm である。

(2) MGC床版供試体

A タイプの供試体 MGC-A-R1, MGC-A-R2 の荷重と たわみの関係は,格子鋼板筋が降伏に至った荷重110kN 付近までは比較的線形的な増加を示しており,荷重 110kN時のたわみは,それぞれ3.0mm,2.9mmである。 また,供試体 MGC-A-R1 の最大耐荷力165kN時のたわ みは8.4mm,供試体 MGC-A-R2 の最大耐荷力170.0kN 時のたわみは10.3mmである。

次に, B タイプの供試体 MGC-B-R1 の荷重とたわみ の関係は, A タイプの供試体と同様の増加傾向を示して いる。格子鋼板筋が降伏に至った荷重 115kN でのたわ みは 2.9mm である。最大耐荷力 170kN 作用時のたわみ は 8.0mm である。また,供試体 MGC-B-R2 の荷重とた わみの関係は,格子鋼板筋が降伏した荷重 110kN 時の たわみは 2.5mm である。最大荷重 170kN 時のたわみは 10.8mm である。

以上より,両供試体ともに鉄筋および格子鋼板筋が降 伏ひずみに達した以降も線形的なたわみの増加が認めら れた。なお,エポキシ系樹脂を塗布した A タイプの MGC 床版に対して亜鉛メッキを塗布した B タイプの MGC 床 版供試体のたわみの増加は僅かではあるが下回ってい る。この要因としては,コンクリートの圧縮強度および 付着強度の差によるものと推測される。

4. 輪荷重走行疲労実験に関する結果および考察

4.1 輪荷重走行疲労実験の実験概要

輪荷重走行疲労実験に用いる RC 床版供試体は RC-F および MGC 床版供試体は A, B タイプ (MGC-A-F, MGC-B-F) の供試体を用いる。

(1) 輪荷重走行疲労実験

輪荷重走行疲労実験は、走行実験同様に床版中央から ±450mm の範囲(900mm)とする。荷重載荷方法は荷重 80kN で 20,000 回走行し、その後、100kN で供試体が破 壊するまで走行させた。たわみの計測は1,10,100,1,000, 5,000 回および5,000 回以降は5,000 回走行ごとに行い、 計測点は床版中央部とした。

(2) 等価走行回数

輪荷重走行疲労実験における耐疲労性は、等価走行回数 N_{eq} を算出して評価する。輪荷重走行疲労実験による等価走行回数 N_{eq} は、マイナー則に従うと仮定すると、式(1)として与えられる。なお、式(1)に適用する S-N 曲線の傾きの逆数 m は、松井らが提案する S-N 曲線式の傾きの逆数の絶対値 m=12.7 を適用する⁸⁾。また、本供試体の基準荷重 P は、道示に規定する床版の 1/2 モデルであることから活荷重 100kN の 1/2 に安全率 1.2 を考慮して 60kN として式(1)に適用する。

$$N_{eq} = \sum_{i=1}^{n} (P_i/P)^m \times n_i$$
(1)

ここで, N_{eq} : 等価走行回数(回), P_i: 載荷荷重(kN), P : 基準荷重(60kN), n_i: 実験走行回数(回), m: S-N 曲線の傾きの逆数(=12.7)

4.2 等価走行回数による耐疲労性の検証

本実験における RC 床版および MGC 床版供試体の等 価走行回数および走行回数比を表-4に示す。

RC床版

RC 床版供試体 RC-F1 の等価走行回数は 6.29×10⁶回で ある。この RC 床版供試体の等価走行回数を基準に, MGC 床版の耐疲労性を評価する。

(2) MGC床版

A タイプのエポキシ樹脂で塗装した供試体 MGC-A-F1, F2 の等価走行回数は、それぞれ 6.03×10⁶回、6.68×10⁶

表-4 実験走行回数および等価走行回数

回である。RC 床版供試体 RC-F1 の等価走行回数と比較 すると MGC-A-F1, F2 でそれぞれ 0.96, 1.06 となり, ほぼ同等の等価走行回数となっている。したがって,格 子鋼板筋を配置した MGC 床版は, RC 床版と同等の耐 疲労性を有する結果となった。

次に、Bタイプの防錆材に亜鉛メッキを使用し、圧縮 側の格子鋼板筋を床版中央から配置した供試体 MGC-B-F1、F2 の等価走行回数は、それぞれ 6.31×10⁶回、 6.62×10⁶回である。RC 床版供試体 RC-F1 の等価走行回 数と比較すると MGC-B-F1、F2 でそれぞれ 1.00、1.05 となり、若干上回ってはいるがほぼ同等の等価走行回数 が得られている。Aタイプの供試体との比較においても、 Bタイプの方が若干上回っているが、これは防錆材の違 いによる付着強度の差異、格子鋼板筋の配置法の違いに よる 1m 当たりの鋼材量の違いおよびコンクリートの圧 縮強度の違いなどの影響が考えられるが、いずれにして も防錆材および格子鋼板筋の配置の違いが耐疲労性の及 ぼす影響は認められず同等の耐疲労性を有している。

以上の結果から, RC 床版に鉄筋に替わる格子鋼板筋 を配置した供試体は,鉄筋を配置した供試体とほぼ同等 な等価走行回数が得られたことから,格子鋼板筋は RC 床版の鉄筋に替わる引張材として十分に実用性があるも のと判断できる。

4.3 たわみと等価走行回数の関係

輪荷重走行疲労試験における RC 床版および MGC 床版のたわみと等価走行回数の関係を図-5に示す。

(1) RC床版

RC 床版のたわみと等価走行回数の関係は図-5に示す

ように、荷重 80kN で 1 走行した後の初期たわみは 1.13mm であり、その後走行を繰り返すことでたわみは 緩やかに増加している。20,000 回走行後に荷重を 100kN に増加し、1 走行した後のたわみは 2.35mm である。そ の後走行を繰り返すことでたわみも増加しているが、床 版支間 L の 1/400 に達した付近からたわみの増加が著し い。たわみが床版支間 L の 1/400、すなわち 3.0mm に達 した時点の等価走行回数は 2.38×10⁶ 回である。破壊時 のたわみは等価走行回数 6.28×10⁶ で、9.28mm である。

(2) MGC床版

A タイプの供試体 MGC-A-F1 のたわみの増加傾向は RC 床版と同様である。荷重 80kN で 1 走行後のたわみ は 1.18mm である。荷重 100kN に増加し, 1 走行後のた わみは 2.47mm であり, RC 床版のたわみを上回ってい る。たわみが床版支間 L の 1/400 に達した時点の等価走 行回数は, 2.42×10⁶回であり, RC 床版と比較すると 0.98 であり, RC 床版に比して下回る結果となった。最大た わみは等価走行回数 6.02×10⁶回で 6.9mm である。また, 供試体 MGC-A-F2 のたわみの増加傾向は供試体 MGC -A-F1 と同様である。荷重 80kN で 1 走行後のたわみは 1.21mm であり, 供試体 MGC-A-F1 を若干上回っている。 たわみが床版支間 L の 1/400 に達した時点の等価走行回 数は, 1.38×10⁶回であり, RC 床版に比して 0.58 となっ ている。最大たわみは, 等価走行回数 6.68×10⁶回で 7.21mm である。

次に, B タイプの供試体 MGC-B-F1 のたわみの増加 傾向も供試体 MGC-A 床版と類似した挙動を示してい る。荷重 80kN で 1 走行後のたわみは 1.14mm である。 荷重 100kN に増加し, 1 走行後のたわみは 2.61mm であ る。最大たわみは, 等価走行回数 6.35×10⁶ 回で 8.9mm である。また,供試体 MGC-B-F2 の増加傾向は供試体 MGC-B-F1 と類似した挙動を示しており,荷重 80kN で 1 走行後のたわみは 1.18mm で,最大たわみは等価走行回 数 6.74×10⁶ 回で 6.08mm である。

以上より, RC 床版と同等の鋼材量を配置した MGC 床版のたわみと等価走行回数の関係は,初期値には違い が見られるものの同様の増加傾向を示している。

4.4 破壊状況

輪荷重走行疲労実験における RC 床版および MGC 床版の損傷状況を図-6に示す。

(1) RC床版

RC 床版のひび割れ状況は図-6(1)に示すように,輪荷重の走行面直下に主鉄筋方向および配力筋方向の2方向のひび割れが発生している。主鉄筋方向のひび割れは配置した鉄筋間隔の位置である。また,輪荷重走行位置から45度下面にはダウエルの影響が及ぼす範囲ではく離している。最終的には輪荷重走行中に押抜きせん断破

(2) MGC-A-F1
 (3) MGC-A-F2
 (4) MGC-B-F1
 (5) MGC-B-F2
 図-6 輪荷重走行疲労実験における破壊状況

壊した。

(2) MGC床版-Aタイプ

(1) RC-F1

A タイプの供試体 MGC-A-F1 のひび割れ状況は図-6 (2)に示すように,主筋方向は格子鋼板筋の配置下面に 発生している。また,配力筋方向は輪荷重の走行面直下 に多く発生し,主筋同様に格子鋼板筋の配置位置に発生 し,格子状を形成している。また,輪荷重走行面から45 度のダウエルの影響が及ぼす範囲ではく離している。

次に,供試体 MGC-A-F2 のひび割れ状況(図−6(3)) も同様に,格子鋼板筋配置位置でひび割れが発生し,ほ ぼ正方形の格子状を形成している。なお,両供試体とも に輪荷重走行中に押抜きせん断破壊した。

(3) MGC床版-Bタイプ

B タイプの供試体 MGC-B-F1 のひび割れ状況は図-6 (4)に示すように、ひび割れ間隔は配置した格子鋼板筋 の間隔と同様な位置に発生している。また、輪荷重走行 面から 45 度下面のダウエルの影響を及ぼす範囲ではく 離が認められるが、RC 床版および MGC-A 床版供試体 と比較するとはく離の範囲が狭い。

次に,供試体 MGC-B-F2 のひび割れ状況は,供試体 MGC-B-F1 と同様な形状を示している。圧縮側の格子筋 を床版支間中央を挟んで配置した MGC-A 供試体に比べ てひび割れはやや不規則に発生し,亀甲状のひび割れも 認められる。また,輪荷重走行面から 45 度下面にダウ エルの影響によるはく離が見られる。破壊は両供試体と もに押抜きせん断破壊となった。

以上より, MGC 床版のひび割れ状況は RC 床版のひ び割れ状況と比較的類似した形状となっているが, 格子 鋼板筋を使用した場合, 一面加工されていることから比 較的規則性のあるひび割れ状況を呈している。

5. まとめ

(1) 走行荷重試験より, RC 床版の最大耐荷力と MGC 床版の最大耐荷力は,ほぼ近似した結果が得られた。 よって,格子鋼板筋を使用した床版でも耐荷力性能 は十分に満足されることが明らかとなった。また, たわみおよびひずみの関係からも RC 床版と類似し た増加傾向を示している。

- (2) 輪荷重走行疲労実験における RC 床版の等価走行回数に比して 2 タイプの MGC 床版の等価走行回数は ほぼ同等の結果を得た。また,破壊は全ての供試体 で押抜きせん断破壊となった。よって,MGC 床版 は耐疲労性が評価され鉄筋に替わる材料として実用 性があるものと判断できる。
- (3) たわみと等価走行回数の関係より, RC 床版・MGC 床版ともにたわみが床版支間 L の 1/400 を超えた付 近からたわみに急激な増加が見られた。よって,維持管理においてはたわみが床版支間 L の 1/400 に達 した時点で対策を講じる必要があると推測される。

参考文献:

- 国土交通省: i-Construction ~建設現場の生産性革命 ~参考資料, 2016
- 2) 阿部忠,師橋憲貴,塩田啓介,今野雄介:補強材として新たに開発された2タイプの鋼板格子筋を用いたRCはりの増厚補強効果,コンクリート工学年次論文集,Vol.37,No.2, pp.1387-1392, 2015.7
- 3) 水口和彦,阿部忠,塩田啓介,新田裕之:格子鋼板 筋を用いた床版部材の押し抜きせん断耐荷力および 耐疲労性評価,コンクリート工学年次論文集,Vol.39, No.2, pp.1369-1374, 2017.7
- 4) 阿部忠,木田哲量,水口和彦,川井豊:走行荷重が 作用する道路橋 RC 床版の押抜きせん断耐力評価式, 構造工学論文集, Vol.55A, pp.1468-1477, 2009.3
- 5) 阿部忠,木田哲量,高野真希子,川井豊:道路橋 RC 床版の押抜きせん断耐荷力および耐疲労性の評価, 土木学会論文集 A1, pp.39-57, 2011.1
- 6) 日本道路協会:道路橋示方書・同解説 I, II, III, 2012
- 7)田中佐愛ほか:ひび割れ損傷を与えた RC はりに展 張格子筋を配置した接着剤塗布型 PCM 補強法におけ る補強効果の検証,第12回複合・合成構造の活用に 関するシンポジウム,pp.(39)1-8,2017.11
- 松井繁之:道路橋床版設計・施工と維持管理,森北 出版,2007.10