# 論文 竹筋コンクリート梁のせん断耐荷力の評価

#### 寺井 雅和\*1

要旨:竹材を主筋に用いた竹筋コンクリート構造を実現するため,これまで竹とコンクリートの付着性状, 梁部材の曲げ変形性能評価を行ってきた。これに続き,竹筋コンクリート梁部材のせん断耐荷力を評価する ことを目的として,7体の供試体を製作し実験を行った。竹材は軟らかいため,竹筋コンクリート梁は,鉄筋 コンクリート梁に比べ剛性が小さい荷重変形性能を示し,耐力は既往の算定式では適切に評価できなかった。 そこで,せん断抵抗に寄与する要因としてダウエル作用に着目し定量的に算定を行い,竹筋コンクリート梁 のせん断耐荷力を適切に評価することができた。

キーワード:梁, せん断, 竹筋コンクリート, ディープビーム, ダウエル作用, PP バンド

## 1. はじめに

竹の引張強度は、鉄筋の約 1/2 の強さがあり、中には 同等の強さを示す竹もある。また、竹は成長が早く、日 本国内はもとより中国から東南アジアにいたる広い地域 に成育するので、入手が比較的容易である。この竹を鉄 筋コンクリート構造の主筋として鉄筋のかわりに用いる, いわゆる竹筋コンクリートに関する研究は、日本では戦 前から盛んに行われた。竹筋コンクリート構造物は戦時 中から終戦直後まで全国各地でつくられていったが、そ の後、戦後復興により鉄鋼の生産供給が安定したため、 竹筋コンクリートに関する技術や研究開発は姿を消した。 しかしながら、化石燃料の使用などのよる生活環境の悪 化により,環境問題は20世紀後半に全世界的な問題とな り、環境負荷の低減が注目されるようになった。そのよ うななか、天然素材を利用したモノづくりが活発になっ ている。なかでも竹は、ナノテク・バイオなど先端的な 研究領域で活用が期待されている素材の一つであり、近 い将来、新産業・新技術を切り拓く可能性を秘めている と言われている。本研究では、環境負荷の低減が特に注 目されている建設産業において、竹を活用したモノづく りの方策の一つとして、竹筋コンクリートという技術に 着目した。

竹筋コンクリート構造が成立するためには、様々な問題を解決する必要があるが、その中でも重要なものの一つとして、竹主筋とコンクリートとの付着力の低さがある。筆者は、昨年のJCI 年次大会(仙台)でコンクリートと丸竹との付着力を向上させるために、竹材の表面に竹串を刺し、また表面にゴムコートを施すことで、技術力を要しない簡単な方法である程度の付着力が向上することを確認した<sup>1)</sup>。さらに、付着力が向上することで、竹筋コンクリート部材の耐力向上と変形性能向上に繋がることを確認した<sup>2)</sup>。

本論文では、昨年までの研究に引き続き、竹筋コンク

リート部材のせん断性状について検討を行う。主筋に鋼 材を使わないので,せん断補強筋にも鋼材を使わないこ とを考え,既往の研究<sup>3)</sup>で組積造壁の耐震補強材料とし て活用が検討されたポリプロピレン製梱包用荷造りテー プ(以下, PP バンド)に着目した。PP バンドは,①容 易に多量に入手可能,②安い,③強くて変形能が高い, ④耐久性が優れている,⑤加工や運搬が容易,という特 徴があるので,耐震補強材料としての活用事例として研 究も行われているが,コンクリート部材のせん断補強筋 としての事例はない。筆者らは,過去にこの PP バンド をフープ筋として使用した竹筋コンクリート柱の中心圧 縮実験を行った<sup>4)</sup>,このときは PP バンドの補強効果につ いては十分に検討できていなかった。

本研究は、竹材を主筋に用いた竹筋コンクリート梁の せん断耐荷力を評価することを目的として7体の梁供試 体を作製し実験を行った。この実験結果を解析し、鉄筋 コンクリート梁と竹筋コンクリート梁の違いを確認する とともに、せん断抵抗に寄与する要因抽出と定量的算定 を行い、竹筋コンクリート梁のせん断耐荷力の評価を試 みた。

#### 2. 梁部材による付着強度

## 2.1 供試体

竹は表面が滑らかなため、コンクリートとの付着力が 極めて小さい。昨年の研究<sup>1)</sup> 同様、竹に穴をあけ竹串を らせん状に差し込むだけの簡単な加工をした竹串竹筋を 使用する。また、竹串のピッチはその後の研究で十分に 付着が確保できる 30mm とした<sup>2)</sup>。また、フレッシュコ ンクリート中で吸水することによる膨張弛緩を抑えて付 着力向上が確認された表面のゴムコートも施した。

表-1 に供試体諸元,図-1 に供試体の形状および配 筋状況を示す。鉄筋を主筋とした梁は,せん断補強筋を 有する3体とせん断補強筋がない無筋梁1体を含む計4

\*1 近畿大学 工学部建築学科准教授 博士(工学) (正会員)

| 写真-1 PPバンドの固定    | 供試体名    | 主筋                        | あばら筋           |                       | 主筋比         | 単位体 圧縮                      | 圧縮                           | 引張                           | ヤング                         |
|------------------|---------|---------------------------|----------------|-----------------------|-------------|-----------------------------|------------------------------|------------------------------|-----------------------------|
|                  |         |                           | 種類             | あばら筋比<br><i>p</i> (%) | $p_{t}(\%)$ | 槓負重<br>(g/cm <sup>3</sup> ) | 5班/受<br>(N/mm <sup>2</sup> ) | 5班/受<br>(N/mm <sup>2</sup> ) | 休奴<br>(kN/mm <sup>2</sup> ) |
|                  | RC-0    |                           | なし             | -                     |             | 2.41                        | <u> </u>                     |                              |                             |
|                  | RC-F4   | F4 2-D13<br>PP1 鉄筋<br>PP2 | 4mm<br>丸鋼      | 0.50                  | 1.41        | 2.50                        | 16.27                        | 2.04                         | 25.87                       |
|                  | RC-PP1  |                           | PPバン<br>ド 0.30 | 0.30                  |             | 2.47                        |                              |                              |                             |
|                  | RC-PP2  |                           | PPバン<br>ド      | 0.60                  |             | 2.48                        |                              |                              |                             |
|                  | BRC-F4  |                           | 4mm<br>丸鋼      | 0.50                  | 1.98        | 2.25                        | 9.89                         | 1.02                         | 30.33                       |
|                  | BRC-PP1 | 2-20mm<br>竹               | PPバン<br>ド      | 0.30                  | 充実<br>断面    | 2.22                        | 6 30                         | 0.77                         | 18 12                       |
| 写真 – 1 PP バンドの固定 | BRC-PP2 |                           | PPバン<br>ド      | 0.60                  | として         | 2.21                        | 0.39                         | 0.77                         | 10.12                       |
|                  |         |                           |                |                       |             |                             |                              |                              |                             |

表-1 供試体諸元およびコンクリートの材料特性

体, 竹主筋のコンクリート梁は3体の合計7体を計画し た。試験部分は支点間とし,支点より外側には狭いピッ チで 4φの鉄筋によるせん断補強を施した。供試体の寸 法は、断面は幅 100mm×せい 200mm, 有効高さ 180mm で全供試体共通とし、梁長さはRC梁1000mmとするが、 竹主筋供試体は主筋端部のすべり量を実測するため、主 筋端部を 12mm 程度小口面から出るようにしたため,外 寸は 976mm となっている。 圧縮鉄筋には, RC 梁は 2D10, BRC 梁は径 18mm 程度の丸竹 2本を用いた。実験パラメ ータは、1) 引張主筋種類(D13 鉄筋, 径 20mm 程度の 竹), 2) あばら筋 (4mm 丸鋼, PP バンド), 3) PP バン ド巻き数(1 重巻き, 2 重巻き)とした。PP バンドは専 用のストッパで固定するが (写真-1),2 重巻きの場合, 二枚重ねて緩みの無いように同じストッパで締め付けた。 なお, PP バンドは鉄筋を全く使用しない竹筋コンクリー トにおいて、あばら筋における鉄筋の代替品としての使 用を試みた。しかし、後述の通り PP バンドは引張剛性 が小さい材料のため、コンクリートのひび割れの開口補 強には全く抵抗しないことが明らかとなった。本論では, 補強効果がないことを示した上で、今後 PP バンドのせ ん断補強筋への活用方法を探る目的で考察を行った。

#### 2.2 使用材料

表-2 に主筋とあばら筋に使用した鉄筋,竹材および PP バンドの材料試験結果を示す。竹は自然素材なので, 供試体により太さや強度が異なっているが,供試体ごと に詳細に評価すると煩雑になるため,3 本の材料試験を 行った平均値として表-2 の値を算出した。また,竹の 断面寸法(外径,内径)は,本実験で主筋として使用し た竹の寸法を実測し,平均値を掲載している。

PP バンドは, 断面寸法(実測)が幅 15.5mm, 厚み 0.5mm のテープ状である。ヤング係数は, 鉄筋の 1/291 (=0.67/195) しかなく, 非常に軟らかい材料である。

コンクリートは, 普通ポルトランドセメント, 最大寸 法 20mm の砕石および福山市瀬戸町産砕砂を使用した。 いずれの供試体も Fc=15 で配合設計したが、竹筋供試体 は冬期の実験で、かつ材齢がやや短かったため、低強度 なコンクリートになっている。載荷試験時における材料 諸値を表-1に示す。

|          | 規格                   | 降伏強度<br>(N/mm <sup>2</sup> ) | :伏強度 引張強度 ヤング係数<br>N/mm <sup>2</sup> ) (N/mm <sup>2</sup> ) (kN/mm <sup>2</sup> ) |      | 破断歪<br>(%) |
|----------|----------------------|------------------------------|-----------------------------------------------------------------------------------|------|------------|
| D13      | (引張鉄筋)               | 389                          | 89 556 167                                                                        |      | 18.8       |
| D10      | (圧縮鉄筋)               | 363                          | 639                                                                               | 162  | 20.5       |
| 4φ(あばら筋) |                      | 313                          | 358                                                                               | 195  | 4.7        |
| 本竹       | 外径19.9mm<br>内径13.0mm | -                            | 122                                                                               | 17.2 | -          |
| PPバン     | ド(あばら筋)              | -                            | 124                                                                               | 0.67 | -          |

表-2 補強筋の材料特性



2.3 加力方法·計測

実験は、全ての供試体で支点間距離(600mm)を三等 分する2点を一方向に押す載荷で行った。せん断スパン が200mm(せん断スパン比 a/d=1.11)と短く、ディープ ビームとなる。梁の変形は、図-2に示す梁下面3点で 計測した。以降,梁の"たわみ"は、これら3点の変位 量を単純平均した値とする。あばら筋には、図-3に示 す鉄筋および PP バンドにひずみゲージを貼付した。ま た、竹主筋梁では、梁の小口面から出した主筋端部に変 位計を当て、すべり量を計測した。







## 3. 実験結果

## 3.1 破壊形式

図-3に4体の供試体の実験終了時の最終ひびわれ状況を示す。ひびわれ線のうち、実線は最大荷重までに発生したもの、点線は最大荷重後実験終了までに発生したものである。なお、ひびわれは左右のせん断スパン内で発生したが、最終損傷の激しい片方のみを示している。

配筋状況や補強筋材料にかかわらず,全ての供試体で, せん断スパン内で載荷点と支点を繋ぐ線上に,斜め引張 ひびわれが発生し,せん断破壊を生じた。

鉄筋コンクリート供試体 (RC\_F4) は、せん断スパン 内に大きな斜めひびわれが発生後、それと平行に数本の 斜めひびわれが発生した。斜めひびわれは載荷の増大と ともに進展し、上端が載荷点に達したときに最大荷重を 計測した。

鉄筋コンクリートで PP バンドをあばら筋とした供試体(RC\_PP1)では, RC\_F4 のような複数の斜めひびわれは発生せず,一本のひびわれが開きながら進展した。 ひびわれ下端が支点付近に進展したところで,最大荷重 を記録している。

竹主筋+4φあばら筋の供試体(BRC\_F4)は、まず載 荷点直下の引張縁に曲げひびわれが発生した後に斜めひ びわれが生じた。曲げひびわれは数本発生し、斜めひび われの下端が支点付近に進展して最大荷重となった。

竹主筋+PP バンドの供試体 (BRC\_PP1) では、曲げひ びわれが発生後、斜めひびわれが発生する前に、圧縮主 筋沿いに小さなひびわれが発生した。しかし、このひび われは、それ以降進展、開口することはなかった。斜め ひびわれがせん断スパン中央部に発生後、今度は引張主 筋沿いにもひびわれが発生した。これは付着割裂ひびわ れと考えられ、発生後大きく伸展することはなかったが、 変形とともに幅が大きく開いた。斜めひびわれの下端が 支点付近に進展したところで、最大荷重をむかえた。



|         |                    |                                                             | 実験値(kN)                      |                 | 計算値(kN)    |                       |                                              |             | 計算値/実験値    |           |          |
|---------|--------------------|-------------------------------------------------------------|------------------------------|-----------------|------------|-----------------------|----------------------------------------------|-------------|------------|-----------|----------|
| 圧       | 圧縮                 | 曲ノギアトアドもわ                                                   | 十二版ひびわ                       | 县十莅香畦           | ひびわれ       |                       | 終局                                           |             | ひびわれ       |           | 終局       |
| 供試体名    | 強度<br>fc'<br>(MPa) | <ul><li>     エリ い い い い い い い い い い い い い い い い い</li></ul> | 2.2.1010-043<br>れ発生時せ<br>ん断力 | 取入何 里 時<br>せん断力 | 曲げ<br>式(1) | せん断<br>式(2)           | 曲げ<br><sub>式(3)</sub>                        | せん断<br>式(4) | flxQcrcal. | shQcrcal. | shQucal. |
|         |                    | flxQcrexp.                                                  | shQcrexp.                    | sh $Q$ uexp.    | flxQcrcal. | ${ m sh}Q{ m crcal}.$ | crcal. flxQucal. shQucal. flxQcrexp. shQcrex | shQcrexp.   | shQuexp.   |           |          |
| RC-0    | 16.27              | 7.49                                                        | 39.0                         | 56.3            | 7.55       | 36.9                  | -                                            | -           | 1.0        | 1.1       | -        |
| RC-F4   |                    | 8.34                                                        | 38.1                         | 72.3            | 7.55       | 36.9                  | 80.1                                         | 60.7        | 0.9        | 1.0       | 0.8      |
| RC-PP1  |                    | 7.88                                                        | 31.5                         | 52.4            | 7.55       | 36.9                  | 80.1                                         | 52.1        | 1.0        | 1.2       | 1.0      |
| RC-PP2  |                    | 8.02                                                        | 32.9                         | 54.2            | 7.55       | 36.9                  | 80.1                                         | 55.5        | 0.9        | 1.1       | 1.0      |
| BRC-F4  | 9.89               | 4.06                                                        | 17.4                         | 27.3            | 4.75       | 33.3                  | 35.3                                         | 55.4        | 1.2        | 1.9       | 2.0      |
| BRC-PP1 | 6.20               | 4.14                                                        | 10.1                         | 19.2            | 3.80       | 31.4                  | 35.3                                         | 46.8        | 0.9        | 3.1       | 2.4      |
| BRC-PP2 | 0.39               | 4.28                                                        | 8.96                         | 20.3            | 3.80       | 31.4                  | 35.3                                         | 50.2        | 0.9        | 3.5       | 2.5      |

表-3 実験結果と計算値の比較

図-4 に荷重 P-たわみδ関係を示す。本供試体は、せん断スパン中央部にせん断ひびわれが発生後もタイドア ーチが形成されることで荷重が増大するディープビーム 特有の様子が現れている。主筋に鉄筋を用いた供試体に 比べ、竹主筋供試体は、剛性、最大荷重が小さく、変形 が大きいことがわかる。

## 3.2 せん断補強筋のひずみ分布

図-3 のグラフにせん断補強筋に貼付したひずみの推移を示す。白丸(○)は、斜めひびわれ発生時。黒丸(●)は、最大荷重時のひずみ値である。鉄筋コンクリート供試体(RC-F4)は、せん断スパン内全ての鉄筋が同じ程度にひずんでいることがわかる。4 φ 鉄筋の降伏時ひずみは、約1600 μ となるが、最大荷重時にはせん断補強筋は降伏していると考えられる。また、竹主筋供試体(BRC-F4)は、最大荷重時に約1000 μ となり、降伏はしていなことがわかる。

ー方, PP バンドでせん断補強した供試体 (RC, BRC 供 試体とも)は、1 本は大きくひずむが、その両隣はほと んど力を負担していない。PP バンドの固定は、**写真**-1 のように専用ストッパで締め付けるが、締付け加減で弛 緩が大きくなり施工精度が高いとは言えない。そのため、 全ての PP バンドが一斉に力を負担することがなかった と考えられる。また、PP バンドは非常に軟らかいので、 例えば 3000  $\mu$  のひずみに対して 1 本当たり 0.27kN しか 引張力は負担していない。あばら筋なしの鉄筋コンクリ ート (RC-0) と、PP バンドでせん断補強した供試体の P-δ 関係がほとんど変わりないのは、このためだといえ る。

## 3.3 耐荷性能の評価

ひびわれ発生荷重値と最大荷重値を**表-3**に示す。計 算値は,鉄筋コンクリートの耐力算定式(式(1)~(4))に よって求めた<sup>5)</sup>。 曲げひびわれ耐力;

$$M_{cr} = 0.56 \sqrt{\sigma_{B}} Z \qquad flx Q_{cr} = 2 M_{cr}/a \qquad (1)$$

せん断ひびわれ耐力;

$$Q_{cr} = \left\{ \frac{0.115k_c(\sigma_B + 50)}{M/Qd + 0.12} \right\} b \cdot D$$
 (2)

曲げ終局耐力;

$$M_u = 0.9a_t \sigma_y d , \qquad flx Q_u = 2 M_u / a \tag{3}$$

せん断終局耐力;

$$Q_{u} = \left\{ \frac{0.092k_{u}k_{p}(\sigma_{B} + 18)}{M/Qd + 0.12} + 0.85\sqrt{p_{w} \cdot \sigma_{wy}} \right\} b \cdot j \quad (4)$$

ここで,式(1)~(4)において,Z:断面係数(=bD<sup>2</sup>/6),b: 供試体幅, j:応力中心間距離, $k_c$ :断面寸法による補 正係数(=0.92), $p_w$ :せん断補筋比, $\sigma_{wy}$ :せん断補強 筋の降伏強度, $k_u$ :断面寸法による補正係数(=0.98),  $k_p$ :引張鉄筋比 $p_t$ (%)による補正係数(=0.82 $p_t^{0.23}$ ),  $\sigma_B$ :コンクリート圧縮強度。

曲げひびわれ発生荷重は、全供試体でほぼ計算値通り であった。せん断ひびわれ発生荷重と終局せん断耐力は、 鉄主筋の供試体ではほぼ実験値と計算値は近い値を示し ているが、竹主筋の供試体3体は計算値よりも極めて小 さな耐力しか発揮できていない。竹は鋼材に比べ剛性が 小さいため、軸方向鉄筋として使用すると部材剛性が小 さくなったと考えられる。図-4のP-δ関係を見ても、 鉄主筋供試体に比べると小さな剛性で推移しているので、 鉄筋コンクリートとは異なる性状で力負担していると考 えられる。次章では、この竹筋コンクリート部材のせん 断耐力について検討する。

## 4. 竹筋コンクリート梁のせん断力耐力評価

## 4.1 せん断ひびわれ発生時

竹筋コンクリート梁は,鉄筋コンクリート梁に比べ剛 性が小さい。これは,竹の剛性が小さいこと,また外径 の太さにかかわらず中空構造であり,曲げ変形による縦 割れを生じることに起因していると考えられる。

土木学会の標準示方書<sup>6)</sup>では、せん断補強筋のない棒 部材のせん断耐力算定式は、次式(5)で表される。

$$Q_{cd} = \frac{\beta_{d} \cdot \beta_{p} \cdot \beta_{n} \cdot f_{vcd} \cdot b_{w} \cdot d}{\gamma_{b}}$$
(5)

ここで、 $\beta_d$ :有効高さの影響、 $\beta_p$ :引張鉄筋比の影響、  $\beta_n$ :軸方向力の影響、 $f_{vcd}$ :設計圧縮強度の影響

(= $0.20\sqrt[3]{f_{cd}} \le 0.72$  (N/mm<sup>2</sup>)),  $f_{cd}$  : コンクリートの設 計圧縮強度,  $b_w$ :梁幅, d:有効高さ,  $\gamma_b$ :部材係数 (=1.3)。

竹筋コンクリート供試体は、コンクリート強度が低い こと、引張主筋比が大きい(充実断面と仮定して P<sub>i</sub>=1.98%)ことが、鉄筋コンクリート供試体との違いで ある。式(5)は、鉄筋コンクリートによる実験式であるた め、竹筋コンクリートにそのまま適用することは難しい と考えられるが、影響要因ごとに係数が設定されている ため、せん断抵抗を検証するにはわかりやすい。本論で はせん断抵抗メカニズムの検証まではできていないが、 本式による定量的な耐力評価を試みた。竹筋コンクリー ト梁のせん断ひびわれ発生強度は**表-4**の通りとなり、 実験値と近い値となった。

#### 4.2 最大荷重時

せん断補強筋をもつコンクリート梁では、斜めひびわ れ発生後のフリーボディを取りだし(図-5)、力の釣り 合いを考える。せん断力を分担する要因は、①圧縮部の コンクリートに作用するせん断力 *Q*cz, ②ひび割れ面の 骨材のかみ合い作用 *Q*a(*Q*aの鉛直成分:*Q*ay)、③軸方向 鉄筋のダウエル作用 *Q*d, ④せん断補強筋による作用 *Q*s が考えられている <sup>7</sup>。これらの要因が同時に抵抗するわ けではないが、一般にせん断力 *Q* は次式で評価されると 考える。

$$Q = Q_{cz} + Q_a + Q_d + Q_s \tag{6}$$



(文献7)をもとに作成)

竹筋コンクリート梁の斜めひびわれは,載荷点と支点 を結ぶ45°の線より,角度がやや急勾配であり,タイド アーチは形成されていないように見える(図-3(c),(d))。 そこで,コンクリート負担分となるQ<sub>cz</sub>は無視する。ま た,斜めひびわれ発生後,骨材のかみ合い作用は減少し, 最大荷重時にはほぼ無視できると考えられるので,Q<sub>a</sub>は 0と仮定する。次に,3.1の破壊状況から,せん断スパン に発生した斜めひびわれ下端が,梁下端へ伸長すると最 大荷重を迎えていることから,最大荷重はダウエル抵抗 の破壊で決まっていると考えられる。なお,3.2 で述べた ように, PP バンドをせん断補強筋とした供試体では,最 大荷重時の力負担は極めて小さいと考えられるが,4mm 鉄筋と同様に扱い無視はしないこととする。

以上のことから、本実験供試体において最大荷重時に おけるせん断力は、次の通り算定されると考える。

| 4mm 鉄筋でせん断補強した供試体;                                |     |
|---------------------------------------------------|-----|
| $Q_{u\_4fai} = Q_{\rm d} + {}_{\rm 4mm}Q_{\rm s}$ | (7) |
| PP バンドでせん断補強した供試体;                                |     |
| $Q_{u\_pp} = Q_{\rm d} + {}_{\rm pp}Q_{\rm s}$    | (8) |

はじめに、あばら筋の負担分の算定を行う。図-3(d) によると、最大強度時のせん断補強筋のひずみは $\varepsilon$ =1000 $\mu$ 程度であり、降伏していないと判断できる。こ のとき、あばら筋の負担力  $Q_s$ は、 $4mmQ_s = E \times \varepsilon \times a_0 \cdot n =$ 196kN/mm<sup>2</sup>×0.001×12.56mm<sup>2</sup>×6本 ≒ 14.8kN となり、 同様に PP バンドをあばら筋に用いた供試体では力の負 担に大きな差があるが、平均して $\varepsilon$ =1000 $\mu$ 程度である と仮定すると、1 重巻きの場合  $ppQ_s = Es \times \varepsilon \times a_0 \cdot n =$ 11.7kN/mm<sup>2</sup>×0.001×7.75mm<sup>2</sup>×6本 ≒ 0.54kN、二重巻 きは 0.54×2=1.09kN と算定する。

次に,軸方向鉄筋のダウエル耐力 Q<sub>d</sub>は,既存建物の耐 震補強工事において,あと施工アンカーに替えて鋼管を コッターとして用いる研究事例<sup>8),9</sup>を参考に計算する。 鋼管コッター接合部の耐力評価は,鋼管のせん断破壊と 周辺コンクリートの支圧破壊のうち小さい方で決まると 考える。なお,竹は中空断面であるが,等価な断面積の 充実円形断面と仮定して計算した。

$$Q_{d} = n \cdot Q_{a}$$

$$Q_{a} = min(Q_{a1}, Q_{a2})$$

$$Q_{a1} = \frac{\sigma_{t}}{\sqrt{3}} \cdot a_{0}/\gamma_{a}, \quad Q_{a2} = 0.4\sqrt{E_{c} \cdot \sigma_{B} \cdot a_{0}}$$
(9)

ここで、n:主筋本数(本)、 $Q_{a1}$ :竹の耐力で決まる主筋1本当りのせん断耐力(N)、 $Q_{a2}$ :コンクリートの支 圧強度で決まる主筋1本当りのせん断耐力(N)、 $\sigma_y$ :竹

| 供試体名    | 圧縮強度<br>σ <sub>B</sub> (MPa) | 実験値()                   | N)                | 計算                           | _                             | _                  |                  |
|---------|------------------------------|-------------------------|-------------------|------------------------------|-------------------------------|--------------------|------------------|
|         |                              | せん断ひびわれ発生時<br>shQcrexp. | 破壊時せん断力<br>Quexp. | せん断ひびわれ<br>式(5)<br>shQcrcal. | せん断終局<br>式(7),(8)<br>shQucal. | Qcrcal.<br>Qcrexp. | Qucal.<br>Quexp. |
| BRC-F4  | 9.89                         | 17.4                    | 27.3              | 11.9                         | 34.1                          | 0.7                | 1.2              |
| BRC-PP1 | 6 20                         | 10.1                    | 19.2              | 10.3                         | 19.9                          | 1.0                | 1.0              |
| BRC-PP2 | 0.39                         | 9.0                     | 20.3              | 10.3                         | 20.4                          | 1.1                | 1.0              |

表-4 竹筋コンクリート梁の実験結果と計算値の比較

引張強度  $(N/mm^2)$ ,  $a_0$ : 竹主筋の断面積  $(mm^2)$ ,  $E_c$ : コンクリートのヤング係数  $(N/mm^2)$ ,  $\sigma_B$ : コンクリートの圧縮強度  $(N/mm^2)$ ,  $\gamma_a$ : 竹主筋の材料特性を考慮した係数 (=1.3とした)。

あと施工アンカーに替えて鋼管をコッターとして用 いる事例を,竹主筋のダウエル抵抗に適用するに当たり, 竹材は縦に割れやすく,ヤング係数が低いため,せん断 破壊強度は鋼管に比べて低いと考えられる。そのためya で低減することとしたが,この値は本実験結果をもとに 1.3とした。式(7),(8)で計算した竹筋コンクリート梁の 最大強度時せん断力は**表**-4の通りとなり,計算値は実験 値をほぼ評価していると言える。

## 5. まとめ

竹材を主筋に用いた竹筋コンクリート梁のせん断耐 荷力を評価することを目的として7体の梁供試体を作製 し実験を行った。竹は表面が滑らかなため、コンクリー トとの付着を向上させるために、竹串を差し込み、機械 的抵抗を高める加工に加え、吸水乾燥による膨張弛緩を 防ぐために表面にゴムコートを施した竹主筋を使用した。 これらの載荷実験結果を解析し、鉄筋コンクリート梁と 竹筋コンクリート梁の違いを確認するとともに、せん断 抵抗に寄与する要因抽出と定量的算定を行い、竹筋コン クリート梁のせん断耐荷力の評価を試みた。その結果, 以下のことが明らかとなった。

1) 配筋状況や補強筋材料にかかわらず,全ての試験 内で載荷点と支点を繋ぐ線上に,斜め引張ひびわれが発 生し,せん断破壊を生じた。竹筋コンクリート供試体で は,大きな曲げひびわれと軸方向鉄筋に沿う付着割裂ひ びわれも発生した。

2) 主筋に鉄筋を用いた供試体に比べ,竹主筋供試体 は、剛性,最大荷重が小さく,変形が大きかった。その ため,せん断ひびわれ発生荷重やせん断破壊時の耐力は, 既往の鉄筋コンクリート算定式では評価できなかった。

3) 竹筋コンクリート梁のせん断ひびわれ発生時荷重 は、中空構造の竹材を充実断面と仮定することで、土木 学会の算定式で定量的に評価できた。しかし、せん断抵 抗メカニズムは鉄筋コンクリート梁とは異なっていると 考えられ、この点について今後検討していく必要がある。 4) 竹筋コンクリート梁の最大荷重時せん断耐力は, 軸方向鉄筋のダウエル作用とせん断補強筋による引張作 用によって抵抗していると仮定した。竹筋コンクリート 供試体のせん断補強筋は降伏していないため, 竹主筋の ダウエル耐力で最大荷重が決定していると評価できた。

本実験では、鋼材の代替品として PP バンドをあばら 筋に使用を試みた。しかし、PP バンドは引張剛性が小さ い材料のため、コンクリートのひび割れの開口補強には 全く抵抗しないことが明らかとなった。本実験結果を踏 まえて、今後 PP バンドのせん断補強筋への活用方法を 検討する予定である。

## 参考文献

- 寺井雅和:竹とコンクリートの付着性状に関する実験 的研究,コンクリート工学年次論文集, Vol.39, pp.499-504, 2017.7
- 2) 寺井雅和:竹筋コンクリート部材の曲げ変形に関する 実験的研究,第12回複合・合成構造の活用に関する シンポジウム講演集,DVD,2017.11
- 7) 櫻井光太郎, Navaratnarajah SATHIPARAN, 目黒公郎: PP-band 工法による不整形石積み組積造壁の耐震補強 に関する実験的研究, 土木学会論文集 A1 (構造・地 震工学), pp.388-392, 2009
- 4) 寺井雅和,南宏一:竹筋コンクリート柱の中心圧縮挙 動に関する基礎的研究,コンクリート工学年次論文集, Vol.33, pp.1171-1176, 2011.7
- 5) 日本建築学会:鉄筋コンクリート造計算規準・同解説 2010, 2010.2
- 6) 土木学会:2012 年制定 コンクリート標準示方書[設 計編],2013.3
- J.G. MacGregor, J.K. Wight : Reinforced Concrete: Mechanics and Design (4th Edition), Prentice Hall, 2004.
- 8)日本建築防災協会:2017年改訂版 既存鉄筋コンク リート造建物の耐震診断基準・改修設計指針・同解説, 2017.7
- 9) 菊田繁美, 三輪明広, 中原理輝, 向井幸一: 鋼管をコ ッターとして用いた耐震補強工法に関する実験的研 究, コンクリート工学年次論文集, Vol.30, No.3, pp.1183-1188, 2008.7