論文 あと施エプレート定着型せん断補強鉄筋における端部プレート形状 と RC 部材のせん断補強効果に関する検討

河村 圭亮*1·趙 唯堅*2·新藤 竹文*3·岡本 晋*4

要旨:著者らは端部にプレートを接合したせん断補強鉄筋(以下,PHBと略記)を用いたあと施工による耐 震補強工法を開発してきた。今回,本工法の施工性向上を目的として,新たに補強鉄筋両端部ともに小型の 円形プレートを取り付けたタイプ,および機械式継手で接続したタイプのPHBを開発した。本研究では,D25 ~D29の比較的太径鉄筋のPHBを適用した場合のせん断補強効果について,RC梁試験体の載荷実験により 検証した。その結果,これらのPHBで補強したRC部材は高いせん断耐力が得られるとともに,従来のPHB と同様に端部プレートの定着性能を考慮した設計手法で評価できることが明らかとなった。

キーワード:あと施工プレート定着型せん断補強鉄筋,耐震補強,せん断補強,施工性向上,機械式継手

1. はじめに

著者らは主に地中 RC 構造物に対して片側からのみの 施工でせん断補強が可能な,あと施工プレート定着型せ ん断補強鉄筋¹⁾(以下,PHBと略記)を用いた耐震補強 工法を開発し,これまで多くの既設構造物に適用してき た。これら従来のPHBは,写真-1(a)に示すように定着 用として埋込側端部は小型の円形プレート,手前側端部 はそれより一回り大きい矩形プレートを取り付けた「片 端矩形プレート型 PHB」であった。今回,本工法の施工 性のさらなる向上を目的として,新たに2つのタイプの PHBを開発した。

1 つは、写真-1(b)に示す補強鉄筋両端部ともに小型 の円形プレートを取り付けた「両端円形プレート型 PHB」である。従来型では既設コンクリートに手前側矩 形プレートを掛ける構造であった。手前側も埋込側と同 じく孔内に埋設される小型の円形プレートとすると、若 干の定着性能低下が想定されるが、矩形プレート部分挿 入のための拡大削孔やそれに伴う断面修復の工程を削減 することができ、施工性向上だけでなくコスト削減や工 期短縮にも繋がるものである。

他方は,写真-1(c)に示す補強鉄筋を機械式継手で接 続した「機械式継手型 PHB」である。作業空間が狭い場 合,補強対象部材の厚さによっては,所定の全長では挿 入が困難であった。そこで,機械式継手を用いることで, このような条件下でも PHB の挿入が可能となるもので ある。機械式鉄筋継手工法のガイドライン²⁾等では,機 械式継手の適用範囲は軸方向鉄筋が基本とされており, せん断補強鉄筋への適用性については部材実験レベルで の検討が必要であると考える。

 (a) 片端矩形プレート型 PHB (従来型)

 (b) 両端円形プレート型 PHB

 (b) 両端円形プレート型 PHB

 (c) 機械式継手型 PHB [両端円形プレート]

 (d) 端部定着プレート (左: 矩形, 右: 小型の円形)

*(a)~(c)は写真左側が手前側,右側が埋込側 写真-1 あと施エプレート定着型せん断補強鉄筋

本研究では、両端円形プレート型 PHB、機械式継手型 PHB で補強した RC 部材のせん断補強効果について検証 することを目的として、せん断破壊する RC 梁試験体の 載荷実験を実施した。ここで、太径鉄筋の PHB を用いる ことで施工本数を減らすことができ、削孔に伴う既設部 材への影響軽減や施工合理化に繋がる。一方、先施工で 補強筋端部に定着体がない場合、太径鉄筋によるせん断 補強では、せん断補強効果が低下するという検討事例³⁾ もある。これらも考慮して今回の実験は比較的太径鉄筋 の PHB を用いて実施した。実験結果より、修正トラス理 論に基づくコンクリート標準示方書[設計編](以下、コ 示と略記)のせん断耐力式⁴⁾を基に、通常のせん断補強 鉄筋を用いる場合に対して小型の円形プレート側端部の

*1 大成建設(株) 技術センター 都市基盤技術研究部 構造研究室 主任 工修 (正会員) *2 大成建設(株) 技術センター 都市基盤技術研究部 構造研究室 次長 工博 (正会員) *3 大成建設(株) 技術センター 社会基盤技術研究部 栄誉研究員 工博 (フェロー会員) *4 成和リニューアルワークス(株) 工事統括部 工事部 品質・技術室 担当部長 工博

実験ケース		Case-1	Case-2	Case-3	Case-4	
PHB挿入部の削孔径 (mm)		46	55	46	65	
	鉄筋種類	異形鉄筋	ネジ節鉄筋	異形鉄筋	ネジ節鉄筋	
	材質,鉄筋径	SD345, D25	SD345, D25	SD345, D29	SD345, D29	
	ر مے غد بلے برط الیا	両端円形	両端円形	両端円形	両端円形	
	端部定者フレート 種類,材質,サイズ	\$35C	\$35C	\$35C	\$35C	
		φ38mm, t=16mm	φ42mm, t=19mm	φ42mm, t=19mm	φ48mm, t=19mm	
DUD	機械式継手の有無	無	有	無	有	
РНВ	継手長 (mm)	—	180	—	200	
	PHB全長 (mm)	655	655	655	655	
	配置間隔	2本@350mm	2本@350mm	2本@350mm	2本@350mm	
	せん断補強鉄筋比 pw	0.36%	0.36%	0.46%	0.46%	
	鉄筋降伏強度 f _v (N/mm ²)	396	391	389	400	
	鉄筋ヤング係数 E _s (kN/mm ²)	187	188	189	192	
主鉄筋	仕様	ネジ節鉄筋, SD490, D51×5本, 主鉄筋比 p _v =1.74%				
	材料試験結果	降伏強度f _y =525N/mm ² , ヤング係数E _s =192kN/mm ²				
コンクリート圧縮強度 f _c (N/mm ²)		40.7	36.8	34.1	34.7	
$p_{w} \cdot f_{y} / f_{c} (N/mm^{2})$		0.035	0.038	0.052	0.053	
モルタル圧縮強度 f _m (N/mm ²)		63.5	63.5	65.4	65.2	

表-1 実験ケース一覧

定着性能低下を考慮する有効係数を用いた手法によれば、 補強後のせん断耐力を安全側に評価できることを示した。

2. PHB によるせん断補強効果確認実験

2.1 RC 梁試験体概要

実験ケースの一覧と使用したコンクリートおよび鉄筋 の材料試験結果を表-1 に示す。RC 梁試験体は、図-1 に示す幅 800mm×高さ 800mm×全長 5,900mm, せん断 スパン比 a/d=2.67 のものが計4体である。それぞれ挿入 する PHB の鉄筋径 (D25, D29) および機械式継手の有 無が異なる条件とした。使用したコンクリートは粗骨材 最大寸法 20mm, 呼び強度 21N/mm²のもので配合を表-2 に示す。PHB による補強後のせん断耐力確認が目的で あるため, せん断破壊型の諸元となるよう主鉄筋は SD490, D51 のネジ節鉄筋を5本ずつ配置しており,引 張主鉄筋比は 1.74%である。その他に一般的な土木構造 物の配筋を想定して配力鉄筋を配置した。いずれもせん

表-2 コンクリートの配合

W/C	s/a	単位量(kg/m ³)					単位量(kg/m³)		
(%)	(%)	水	早強セメント	細骨材	粗骨材	混和剤			
62.4	43.3	158	253	818	1096	2.15			

断スパンにはせん断補強鉄筋が配置されていない試験体 に対して,材齢19日でPHBをあと施工で挿入してせん 断補強を行った。PHBはドリルで削孔した孔内にモルタ ルを充填した後に挿入,定着した。ここで,挿入方向は 片側のせん断スパンは上面から,もう一方のせん断スパ ンは底面からとした。PHBの挿入深さは削孔面と反対側 の主鉄筋の5mm手前までとした。Case-2,4では,すべて のPHBはネジ節鉄筋を用いたものとし,その中央部にト ルク固定方式の機械式継手を設けた。なお,本実験では 機械式継手は同列配置(いも継ぎ配置)としている。PHB のせん断スパン方向の配置間隔350mmは,コ示4の構造 細目に準じて標準施工範囲のほぼ上限に相当する有効高

写真-2 載荷試験状況

さd (=730mm)の1/2 に近い条件とした。この範囲より 大きい配置間隔で補強を行った場合には、トラス機構の 維持が困難になることも指摘されており⁵)、今回の実験 条件は標準施工範囲内でせん断補強に対して不利なもの である。また、試験体高さは土木構造物の壁部材を想定 すると比較的厚さが小さいものであるが、その分、端部 定着性能が及ぼす影響が大きくなり、不利な条件である と考える ⁹。

2.2 載荷方法および測定項目

地震力の作用を想定して,計算上の最大荷重の1/5程 度の荷重を中央2点で正負交互に漸増させる載荷方法と した。ここで,上側からの載荷を正側載荷,下側からの 載荷を負側載荷とする。

載荷試験状況を写真-2に示す。載荷板および支承板 にはそれぞれ幅 100mm の鋼板を用いた。試験体中央に おける鉛直変位およびすべての PHB でひずみの測定を 行った。PHB のひずみは,機械式継手がない Case-1,3 は 部材高さ方向中央位置, Case-2,4 は機械式継手を避けた 鉄筋部分2ヶ所にひずみゲージを貼付けた。

2.3 実験結果

(1) せん断耐力

各ケースのせん断力-中央変位関係を図-2 に、最終的にせん断破壊に至ったスパンでの斜めひび割れ発生時のせん断力 V_{e,exp} と最大せん断力 V_{exp}を表-3 にそれぞれ示す。

すべてのケースで,正側,負側の載荷ともに 150~200kN 程度で等曲げ区間から曲げひび割れが生じ始め,410~575kN でせん断スパン内に斜めひび割れの発生が確認されたが,その後もせん断力は増加し続け,斜めひび割れと交差する PHB がせん断力を負担していることが示唆される。

Case-1 は, 正側載荷の+1,341kN でせん断力が最初に低下し, その次の負側載荷において-1,317kN でせん断力が低下した。

Case-2 は、負側載荷の-1,441kN でせん断力が最初に低下し、その次の正側載荷では1つ前の正側載荷での最大せん断力+1,354kN に到達する前にせん断力が低下した。

(b) Case-3,4(PHB:D29) 図ー2 せん断カー中央変位関係

表-3 斜めひび割れ発生時のせん断力と最大せん断力

実験	正側載荷		負側載荷		
ケース	V _{c,exp}	V _{exp}	V _{c,exp}	V _{exp}	
Case-1	+455 kN	+1,341 kN	-575 kN	-1,317 kN	
Case-2	+495 kN	+1,354 kN	-575 kN	-1,441 kN	
Case-3	+480 kN	+1,275 kN	-410 kN	-1,352 kN	
Case-4	+575 kN	+1,333 kN	-545 kN	-1,443 kN	

V_{c,exp}: 斜めひび割れ発生時のせん断力 (せん断破壊に至ったスパンでの値)

V_{exp}:最大せん断力

*網掛けは正側, 負側の内, 最初に発生した方を示す.

Case-3 は, 正側載荷の+1,275kN でせん断力が最初に低下し, その次の負側載荷では1つ前の負側載荷での最大せん断力-1,352kN に到達する前にせん断力が低下した。

Case-4 は, 正側載荷の+1,333kN でせん断力が最初に低下し, その次の負側載荷において-1,443kN でせん断力が低下した。

PHB の鉄筋径 D25, D29 のケースともに,機械式継手の有無によるせん断力-中央変位関係の履歴や最大せん

(d) Case-4 (PHB: D29, 継手あり)
 *いずれもせん断破壊に至ったスパンを示す。
 写真-3 実験終了後のひび割れ状況

断力に大差は見られなかった。機械式継手ありのケース の方が僅かに最大せん断力が高くなったのは,機械式継 手の断面部分を含めるとせん断補強鉄筋断面積が増加し ていることや止端部の付着によるものと考えられる。

(2) 破壊性状

実験終了後のせん断破壊に至ったスパン内のひび割れ 状況を**写真-3**に示す。試験体表面の赤線は正側載荷時, 青線は負側載荷時に発生したひび割れをそれぞれ示して いる。また,写真中には機械式継手を含めて PHB の位置 を緑の破線で示している。いずれのケースも PHB を上面 側から挿入した方のせん断スパンで破壊に至ったが,最

初のせん断力低下の段階に載荷方向による偏りは認めら れないことから、PHBの挿入方向が破壊性状に及ぼす影 響はないと考えられる。

写真-3(a)に Case-1 正側載荷時の主要な変状の発生 順序を示す。この順序は他の3ケースでも同様であった。 曲げひび割れ発生後に,斜めひび割れが分散して複数生 じている。これは PHB,充填モルタル,コンクリートの 各材料間の一体性が確保され,PHB が受け持つ引張力が 十分にコンクリートに伝達されたことによると考えられ る。その後,部材厚さ方向の中央部で PHB が降伏してい る。これより,PHB は主鉄筋に掛かる構造ではないが, 端部プレートによる定着性能を有するため,トラス機構 が卓越する耐荷機構を形成していると考えられる。最大 せん断力時には,1 本の斜めひび割れが大きく開口する とともに,主鉄筋に沿ったひび割れも急激に進展して大 きく開口した。この過程では,PHB が通常のせん断補強 鉄筋のように主鉄筋を囲い込む配置になっていないこと による影響が生じていると言える。

なお, PHBの鉄筋径 D25, D29のケースともに,機械

式継手の有無による破壊性状の差は見られなかった。

(3) PHB のひずみ

せん断カーPHB ひずみ関係について,写真-3中に黄 色の丸で示す位置での結果を材料試験より得られた PHBの降伏ひずみと併せて図-3に示す。

いずれのケースでも斜めひび割れ発生まではほとんど ひずみが生じていないが,斜めひび割れ発生後はせん断 力の増加に伴って,ひずみが増加した。これより,斜め ひび割れの開口に対して PHB が機能して抵抗している ものと言える。最大せん断力作用時には,Case-3を除い て少なくとも1本の PHB が降伏している。Case-3 はひず みゲージ位置と斜めひび割れ位置に若干の差があり降伏 には至っていないが,1本の PHB が降伏ひずみに近い値 まで増加している。また,いずれのケースも斜めひび割 れが大きく開口した最大せん断力付近では断線の影響に より計測不能となっているひずみゲージもある。

以上のことから,通常のせん断補強鉄筋と構造や定着 性能が異なっていても,PHBはせん断力に対する補強材 として十分な補強効果を発揮しているものと考えられる。

3. PHBによるせん断補強効果の評価手法の提案 3.1 補強後のせん断耐力算定式

寸切り鉄筋とは異なり,端部プレートを有する PHB で 補強した RC 部材は、トラス機構が卓越する挙動となる。 そのため、従来の片端矩形プレート型 PHB で補強した RC 部材のせん断耐力 Vyd は、修正トラス理論に基づくコ 示のせん断耐力式⁴に、PHB により受け持たれるせん断 耐力 Vphbd を累加する式(1)で安全側に評価できることが 確認されている¹⁾。ここで、PHB は標準フックを主鉄筋 に掛ける通常のせん断補強鉄筋とは構造や定着性能が異 なるため、Vphbd は式(2),(3)に示すようにトラス理論より 算出される値に PHB のせん断耐力分担の有効性を示す 係数(有効係数) βaw を乗じて評価するものである。

$$V_{yd} = V_{cd} + V_{sd} + V_{phbd}$$
(1)

$$V_{\text{phbd}} = \beta_{aw} \cdot V_{awd}$$

 $= \beta_{aw} \cdot \{A_{aw} f_{awyd} (\sin \alpha_{aw} + \cos \alpha_{aw}) / S_{aw} \} z / \gamma_b \qquad (2)$

$$\beta_{aw} = 1 \cdot l_y / \{2 \cdot (d \cdot d')\} \qquad \text{if } (d \cdot d' \ge l_y) \tag{3}$$

ここで、 V_{cd} : せん断補強鋼材を用いない RC 部材のせん 断耐力⁴)、 V_{sd} : 既存のせん断補強鋼材により受け持たれ る RC 部材のせん断耐力⁴)、 V_{awd} : PHB を通常のせん断 補強鋼材とみなして求められるせん断耐力, β_{aw} : PHB のせん断耐力分担の有効性を示す係数(有効係数), A_{aw} : 区間 S_{aw} における PHB の鉄筋総断面積, f_{awyd} : PHB の設 計降伏強度, α_{aw} : PHB が部材軸となす角度, S_{aw} : PHB の配置間隔, z: E縮応力の合力の作用位置から引張鋼材 図心までの距離, γ_b : 部材係数, l_y : PHB 円形プレート 側の必要定着長¹)、d-d': 補強対象部材のE縮鉄筋と引張

(b) 両端円形プレート型 PHB の場合
 図-4 斜めひび割れ内の PHB 負担応力分布

表-4 せん断耐力の実験値と計算値の比較

実験ケース	Case-1	Case-2	Case-3	Case-4
V _{exp} (kN)*	1,329	1,397	1,313	1,388
V _{cd} (kN)**	522	505	492	495
$V_{phbd} (kN)^{**}$	576	569	687	707
V _{cal} (kN)**	1,099	1,074	1,180	1,202
V_{exp}/V_{cal}	1.21	1.30	1.11	1.15

*実験における正側と負側の最大せん断力の平均値 **各種安全係数を1として,鉄筋およびコンクリート の実強度を用いて式(1),(2),(4)により計算した結果

鉄筋の間隔である。

この評価手法では,斜めひび割れと交差する PHB が負 担する応力分布を図-4(a)に示す通りとして算定する。 図中の f_{yw}は PHB の降伏応力, f_{sw}は PHB が負担できる 応力を示す。これは, PHB の矩形プレート側は端部まで 定着が確保されているが,円形プレート側は,端部では せん断応力を負担することができず,端部から必要定着 長 l_y以上離れた位置では降伏強度相当のせん断応力を負 担できるとし,端部から l_yの区間は負担できる応力を線 形で仮定したものである。

式(3)より算出される有効係数 β_{aw} は,前述の通り小型 の円形プレートで定着される埋込側端部の定着性能に応 じた低減係数である。両端円形プレート型 PHB では,手 前側端部も小型の円形プレートであることから,図-4(b)に示すように埋込側端部と同様に負担できる応力が 低減するものと考えると有効係数 β_{aw} は式(4)より算出で きる。

 $\beta_{aw} = 1 - l_y/(d-d')$ if $(d-d' \ge 2l_y)$ (4) なお、補強効果確認実験結果より機械式継手の有無に よる差が見られなかったことから,機械式継手型 PHB を 用いた場合は機械式継手がない場合と同様の方法でせん 断耐力を算出できると考えられる。

3.2 実験結果に基づくせん断耐力算定式の検証

式(4)による β_{aw} と式(1),(2)によって算出されるせん断 耐力を実験結果と併せて表-4 に示す。いずれのケース もせん断耐力の実験値 V_{exp} は計算値 V_{cal} を上回っている。 補強設計においてはさらに安全係数(材料係数,部材係 数)を考慮することから,提案するせん断耐力算定式に よって安全側の評価ができると考えられる。なお,いず れのケースも実験値は計算値に対して余裕のある結果と なっており,通常のせん断補強鉄筋を今回の実験条件に 近い鉄筋量で検討した既往の実験的検討^のや解析的検討 ⁸と同じ傾向である。

PHB の鉄筋径 D25 の Case-1,2 に対して鉄筋径 D29 の Case-3,4 では、せん断補強鉄筋比が大きくなり、V_{phbd}の 増加に伴って V_{cal} が大きくなるが、V_{exp} はほとんど差が ない結果であった。これは、いずれも PHB が降伏してい ることを考慮すると、コンクリート負担分のせん断力の ばらつき、もしくはコンクリートに対する PHB の強度比 (表-1 中の p_w·f_y / f_c)の増加が影響していることが考 えられる。

この評価手法では、せん断補強鉄筋端部の定着性能が 標準フックとは異なるが、トラス機構が保持されるせん 断力に対する耐荷機構を想定しているため、トラス機構 の成立が前提条件となる %。今回の実験では、いずれの ケースの破壊状況も圧縮部コンクリートの圧壊や引張鉄 筋の降伏は生じなかった。最大せん断耐力に達する直前 までは主鉄筋に沿ったひび割れも生じておらず、通常の せん断補強鉄筋を用いた一般的な斜め引張破壊と同様の 挙動を呈していた。また、斜めひび割れと交差する PHB は降伏もしくは降伏に近い応力を負担しており, PHB に より受け持たれるせん断耐力は式(2),(4)で評価できた。 これらの結果から総合的に判断して、両端円形プレート 型 PHB でせん断補強した RC 部材は, せん断力の作用に 対してトラス機構と同様の耐荷機構が形成されているも のと考えられる。今回の実験検討は既設のせん断補強鉄 筋がない条件で実施したが、主鉄筋に掛かる既設のせん 断補強鉄筋がある部材に対する補強では、より安定した トラス機構の形成が期待できる。

なお,提案した補強後のせん断耐力評価手法を用いる 場合には,斜め引張破壊が生じるモードとなることが前 提条件である。そのため、コ示ではコンクリート強度と の比 $p_w \cdot f_y / f_c \leq 0.1$ の上限が設けられている ^{4),8)}ように, PHB の適用に際してはせん断補強鉄筋量が過大になら ないような設計的配慮が必要であると言える。

4. まとめ

本研究では、RC 梁試験体の載荷実験により、施工性 向上を目的として新たに開発した両端円形プレート型 PHB および機械式継手型 PHB のせん断補強効果を検証 した。得られた知見は以下に示す通りである。

- (1) 両端円形プレート型 PHB は斜めひび割れの開口に 対して有効に機能し、十分なせん断補強効果を得る ことができる。
- (2) 機械式継手型 PHB で補強した試験体のせん断耐力 や破壊性状は機械式継手のない PHB と同様であり, 同等のせん断補強効果を発揮する。
- (3) 両端円形プレート型 PHB による補強後のせん断耐 力は,既往の修正トラス理論の考え方を基に,提案 した両端部の定着性能を考慮した有効係数 βawを用 いた手法によって安全側に評価できる。

参考文献

- 土木研究センター:建設技術審査証明報告書(建技 審証第0522号) 後施エプレート定着型せん断補強 鉄筋「Post-Head-bar」, 2015.
- 2) 機械式鉄筋継手工法技術検討委員会:現場打ちコン クリート構造物に適用する機械式鉄筋継手工法ガ イドライン, p15, 2017.
- 小林薫,鷹野秀明,佐々木尚美:棒状せん断補強鉄 筋を配置した RC 部材のせん断破壊挙動に関する基 礎検討,コンクリート工学年次論文集, Vol.35, No.2, pp.1033-1038, 2013.
- 4) 土木学会:2012 年制定コンクリート標準示方書[設 計編], pp.180-187, pp.325-327, 2013.
- 5) 熊谷祐二ほか:あと施工プレート定着型せん断補強 鉄筋による RC はりのせん断補強効果,土木学会論 文集 E2, Vol.73, No.1, pp.118-132, 2017.
- 6) 松本敏克ほか:あと施工型せん断補強工法の極厚部 材への適用性に関する解析的評価,土木学会年次学 術講演会講演概要集,Vol.72,V-198,2017.
- 桧貝勇:鉄筋コンクリートはりのせん断破壊に関する基礎研究,土木学会論文報告集,Vol.279,
 pp.113-126,1978.
- 坂口淳一ほか:せん断補強鉄筋を多量に配置した RC
 梁部材のせん断破壊耐力に関する検討,土木学会論 文集 E2, Vol.69, No.2, pp.192-206, 2013.
- 前川宏一,中村光,佐藤靖彦,Kukrit Toongoenthong: せん断補強筋の定着不良が RC はりのせん断耐力に 及ぼす影響,コンクリート工学年次論文集,Vol.26, No.2, pp.973-978, 2004.