論文 スラグ系細骨材を用いたコンクリートの収縮ひび割れ抑制効果に関 する基礎的研究

原品 武*1・今本 啓一*2・清原 千鶴*3・山崎 順二*4

要旨: 非鉄スラグ細骨材および高炉スラグ細骨材を用いたコンクリートの収縮ひび割れ抑制効果を明らかにすることを 目的とし, 強度特性, 乾燥収縮, 圧縮クリープ, 収縮ひび割れ試験を行った。その結果, 本実験の範囲内においては, 非鉄スラグ細骨材および高炉スラグ細骨材を用いたコンクリートのヤング係数は砕砂を用いたコンクリートよりも大きく, 乾燥収縮ひずみおよびクリープひずみは減少した。また, これらのスラグ系細骨材を用いることで, 収縮ひび割れ発 生材齢が遅延し, 収縮ひび割れ抑制効果が得られることが確認できた。

キ-ワ-ド:非鉄スラグ細骨材,高炉スラグ細骨材,乾燥収縮,圧縮クリープ,収縮ひび割れ

1. はじめに

製鉄過程において副産される高炉スラグ(以下,BFS),非 鉄金属を製錬する際に副生するフェロニッケルスラグ(以下 FNS),銅スラグ(以下 CUS)をコンクリート用細骨材として有 効利用した場合,コンクリートの乾燥収縮低減する結果^{1),2)} が得られており,収縮ひび割れ抑制材としての有効利用が 期待される。収縮ひび割れ抑制材としての適用に当たって, 普通骨材を用いたコンクリートと同様に鉄筋コンクリート構造 物のひび割れ発生応力を評価できることが望ましい。そのた めには,これらのスラグ系細骨材を用いたコンクリートの乾燥 収縮ひずみ,クリープ特性ならびに収縮ひび割れ特性を明 らかにするとともに,これらの評価式について検討を行う必要 がある。

そこで,本研究では,スラグ系細骨材を用いたコンクリートの収縮ひび割れ抑制効果を実験的に明らかにするために, 強度特性,乾燥収縮,圧縮クリープ,収縮ひび割れ試験を 行った。

2. 使用した細骨材の特性

使用した骨材の物性を表 - 1 に示す。比較用として砕砂 (以下 CS)を用いて検討した。表中には,収縮に影響を及ぼ す物性値として,吸湿率,平衡気乾含水率,比表面積につ いて測定した。これらの試験方法は以下のとおりである。

骨材の吸湿率は,乾燥炉にて絶乾状態にさせた細骨材を 相対湿度 100%の環境下にした簡易チャンバーを用いて水 蒸気を吸着させ,平衡状態になるまで静置した。最後に,絶 乾質量を測定し,次式(1)より吸湿率を算出した。なお,試験 は温度 20±2 の恒温環境下で行った。

吸湿率(%)=(We100-Wz)/Wz×100 (1) ここに,We100:温度 20±2 ,湿度 100%R.H.環境下の平 衡時における骨材の質量(g)

表 - 1 使用した骨材の物性

骨材の種類	記号	表乾密度 (g/cm³)	微粒分量 (%)	吸水率 (%)	吸湿率 (%)	平衡気乾 含水率 (%)	比表面積 (m²/g)	
砕砂	CS	2.64	4.7	1.78	0.71	0.54	6.45	
フェロニッケル スラグ細骨材	FNS	3.02	3.6	2.05	0.13	0.07	0.51	
銅スラグ 細骨材	CUS	3.49	3.2	0.30	0.08	0.05	0.18	
高炉スラグ 細骨材	BFS	2.72	2.72 3.1 1.36 0.		0.13	0.11	0.61	
砕石 1	CG1	2.69	0.8	0.86				
砕石 2	CG2	2.70	0.4	0.59				

Wz:絶乾質量(g)

骨材の平衡気乾含水率は,コンクリートの乾燥収縮ひず みを測定する同一環境下の恒温恒湿室内(温度 20 ,相 対湿度 60%)での含水率とし,恒温恒湿室内にて表乾状態 にした骨材の質量が恒量になるまで静置し,その後 105± 5 で絶乾状態にして式(2)より算出した。

平衡気乾含水率(%)=(Wd-Wz)/Wz×100 (2) ここに,Wd:恒温恒湿室内にて恒量になった時の質量(g)

Wz:絶乾質量(g)

骨材の比表面積測定においては、広範囲の相対圧力(5 ~99%)にわたって等温吸着曲線が得られる自動試験機 (Hydrosorb)を用いた。水分の移動を伴う乾燥収縮現象を取 り扱うため,水蒸気を吸着質とした。比表面積は,BET1 点法 により、相対圧力が 30%における吸着量から算定した。なお、 ここでの比表面積とは内部空隙も含むものである。

これらの測定結果によると,吸水率についてはCSよりBFS およびCUSの方が低い傾向が見られた。これはBFSおよび CUS成分の中にSiO2のガラス質が多く含まれており,また, CUSについては,鉄分を含有しているので水が骨材に吸収 されにくいためと考えられる。比表面積は,CSと比較して FNS,CUSおよびBFSが小さくなっている。

*1	東京理科大	学大学院 エ	学研究科建築	学専攻 修	土(工学)(学	生会員)
*2	東京理科大	学 工学部建	築学科 教授	博士(工学)) (正会員)	
*3	東京理科大	学 工学部建	築学科 嘱託	助教博士(工学) (正会算	員)
*4	(株)淺沼組	技術研究所	材料研究グル	レープリーダ	博士(工学)	(正会員)

表 - 2 調合表

記号	W/C	細骨材の 種類		混合率	s/a	単位量 (kg/m³)						混和剤量 (C×%)	空気量調整剤 (C×%)	
	(%)	S ₁	S ₂	(%)	(%)	W	С	S ₁	S ₂	CG ₁	CG ₂			
CS			-	0	46.9	180	360	826	0	374	564	0.80	2.5A	
FNS	50	50	66	FNS	50	46.9	180	360	413	473	374	564	0.60	0.5A
CUS	50	05	CUS	50	47.5	180	360	413	546	374	564	0.50	0A	
BFS			BFS	50	41.5	180	360	413	426	374	564	0.65	0.5A	

C:セメント(普通ボルトランドセメント 密度 3.16g/cm³) 混和剤:高性能 AE 減水剤 A:C×0.001%

3. 実験概要

3.1 コンクリートの調合および実験項目

調合を表 - 2 に示す。水セメント比は 50%とし、セメントに は、普通ポルトランドセメントを使用した。スランプ 18±2.0cm, 空気量 4.5±1%となるように試し練りを行い、調合を決定した。 FNS,CUS および BFS の混合率は 50%とした。実験項目を 表 - 3 に示す。実験では、FNS,CUS および BFS の使用によ る強度増加および収縮低減効果を検討した。

3.2 実験方法

フレッシュ性状については,スランプ試験(JISA1101)およ び空気量試験(JISA1108)に準拠し,スランプ値,空気量, 温度の試験を行った。また,ブリーディングについての性状 確認を行った。

強度試験においては, 100×200mmの円柱試験体を用 い, 圧縮強度試験(JIS A 1108), 弾性係数試験(JIS A 1149) および割裂引張強度試験(JIS A 1113)を行った。なお, 強度 試験は表 - 3 に示す試験材齢において実施した。強度用試 験体は, 恒温恒湿室内(温度 20 , 相対湿度 60%)にて封 緘養生を行い, 材齢7日で脱型し, 気中養生とした。

また,比較用として標準養生の試験体は,恒温室(温度 20)にて封緘養生を行い,材齢1日で脱型し,その後標準 水中養生(温度20)を行った。

乾燥収縮ひずみ試験には,100×100×400mm の角柱試 験体を用い,コンクリート内部に埋設した埋め込みゲ-ジ (KM 埋め込み型ひずみゲージ,測定長 120mm)にてひず みの測定を行った。また,材齢 7 日で脱型し,100×400mm の試験体側面2面を乾燥面とし,その他の面をアルミ箔テ-プによりシ-ルをして恒温恒湿室(温度 20 ,相対湿度 60%)で気中養生とした。

図 - 1 にクリープ試験装置を示す。圧縮クリープでは,2体 のクリープ試験体,1 体のダミー試験体を用意し,試験機に 鉛直方向に3段積み重ね載荷できるようにした。載荷方式は 手動式とし,載荷応力が所定荷重の±5%以内になるように調 整した。試験体のひずみの測定には試験体中央部に埋設し た埋め込みゲージを用いた。また,同様に埋め込みゲージ を埋設した同一養生の無載荷試験体を作製し,クリープ変 形に含まれる自由ひずみ成分の測定を行った。なお,載荷 荷重は静的圧縮強度の30%程度とした。

表 - 3 実験項目									
実験	頃目	試験体寸法 (mm)	試験 体数 (本)	測定開 始材齢 (日)	養生 条件				
フレッシュ性状		-	-	-	-				
圧縮強度 (ヤング係数)			3	7, 28,					
割裂引	張強度	100 × 200	3	28	7日まで 封緘				
圧縮	載荷		2	7					
クリープ	無載荷		1	'	その後気中				
乾燥収縮ひずみ		100 × 100 × 400	1	7	~~ 1				
乾燥収縮	ひび割れ	100 × 100 × 1100	2	7					

表 - 4 フレッシュ性状結果

記号	スランプ (cm)	空気量 (%)	練り上がり温度 ()
CS	20.0	4.7	19
FNS	18.0	4.9	19
CUS	17.0	3.3	20
BFS	18.0	4.1	21

乾燥収縮ひび割れ試験は、日本コンクリート工学会で提 案されているコンクリートの収縮ひび割れ評価試験方法³⁾に 準拠し、100×100×1100mmの試験体を1水準につき2 体作製した。拘束体である鉄筋は丸鋼 32mmとし、定着 部をM33相当のネジ加工とし、試験区間の中央部で対称 に2枚のひずみゲージを貼付した。材齢7日に脱型し、 100×1100mmの試験体側面2面を乾燥面とし、その他の 面をアルミ箔テープによりシールし、乾燥を開始した。

4. 結果および考察

4.1 フレッシュ性状およびブリーディング

フレッシュ性状の一覧を表 - 4 に示す。FNS,CUS および

BFS を用いた場合, CN を使用したコンクリートと比べて空気 を巻き込みやすいため, いずれの調合においても空気量調 整剤が少なくなっている。スランプは 18.0±2.0cm, 空気量は 4.5±1%の範囲内にほぼ収まっており, ワーカビリティは良好 であった。

ブリーディング量の比較を図 - 2 に示す。FNS,CUS および BFS を用いた場合,CS に比べてプリーディング量が多くなっ ている。CUS および BFS 使用では,ブリーディング量が2倍 以上に増加する傾向となった。一般に細骨材中の微粒分量 が少なくなることにより,スランプ経時変化は良くなるが⁴⁾,ブ リーディング量については多くなることが示されている。表 -1 に示すようにスラグ系細骨材の微粒分量は CS よりも少ない ことが要因の1 つであると考えられる。しかしながらいずれの 調合においても日本建築学会の収縮ひび割れ指針(案)⁵に 記載されている 0.3cm³/cm² 以下は満足している。

4.2 強度試験

圧縮強度試験結果を図 - 3 および 4 に示す。FNS を使用 したコンクリートは, 材齢 7 日から CS を用いたコンクリートに 比べて圧縮強度が高くなっている。CUS および BFS を使用 したコンクリートは材齢 7 日では, CS と比べ強度が低いが, 材齢 28 日では, 同等以上の強度が得られている。既往の研 究²⁾において, BFS 使用したコンクリートは初期強度が小さ いことが指摘されているが本実験においても同様な結果が 得られた。また, 養生条件の違いについて見てみると標準養 生では, 5N/mm² 程度, 気中養生よりも高くなっている。圧縮 強度に及ぼす影響は, ブリーディング量や FNS,CUS および BFS の破砕値や細骨材の周辺に形成される水和生成物な どが考えられ, 今後は長期材齢の圧縮強度の確認とともに, スラグ系細骨材が圧縮強度の増進に寄与するメカニズムに ついて検討する予定である。

ヤング係数の測定結果を図 - 5 に示す。FNS, CUS および BFS を用いたコンクリート供試体ともいずれの材齢においても CS よりも高い値となっている。

圧縮強度とヤング係数の関係を図 - 6 に示す。図中には, 日本建築学会「鉄筋コンクリート構造計算基準・同解説」によ る推定式(K1=1.0)を示している。これによると,推定式と比較 して材齢7日は低い値を示し,材齢28日および91日は同 等以上の値になっている。

割裂強度試験結果を図 - 7 に示す。材齢 28 日において, スラグ系細骨材を用いた場合においても CS とほぼ同程度の 値を示している。また,乾燥収縮ひび割れ時の強度につい ても測定している。

以上のことから,材齢28日および91日において,スラグ 系細骨材を用いたコンクリートは,普通骨材を用いたコンクリ ートと比較して,ほぼ同程度の強度発現性を有し,ヤング係 数は若干大きくなることが確認できた。

図 - 6 圧縮強度とヤング係数の関係(気中養生)

4.3 乾燥収縮ひずみ

乾燥収縮ひずみの測定結果を図 - 8 に示す。CS を使用 したコンクリートに比ベスラグ系細骨材を使用したコンクリート の方が小さくなっており、CS を使用したコンクリートに対して FNS,CUS および BFS のコンクリートにおける乾燥収縮ひず みの低減率は乾燥材齢 110 日の時点で、それぞれ 13%、 17%および 11%程度であった。

実験データを式(3)の近似式にあてはめ乾燥収縮ひずみの終局値 を求めた。その結果を表 - 5 に示す。

$$\varepsilon_{\rm sh}(t_s) = \varepsilon \cdot \left(\frac{t_s}{\alpha + t_s}\right)^{\beta}$$
 (3)

ここに, ε_∞:終局乾燥収縮ひずみ(×10⁻⁶) α, β:材料定数

既往の研究 ⁶において,比表面積が小さいほど乾燥収縮 ひずみが小さくなる傾向にあることが示されていることから, ここでは表 - 5 に示したスラグ系細骨材を用いたコンクリート の収縮低減係数と細骨材の比表面積比の関係(図 - 9)につ いて検討した。なお,比表面積比とは,スラグ系細骨材を使 用したコンクリート中の細骨材の比表面積(ASPs)を普通細骨 材のみを用いたコンクリート中の細骨材の比表面積(ASPs) で除した値である。細骨材を混合使用しているため,合算し た比表面積比は以下の式(4)により算出した。式(4)には使用 した細骨材量の影響が考慮されているため,スラグ系細骨材 の混合量についても加味された式となっている。

図 - 9 より比表面積比が小さくなるほど収縮低減係数も小 さくなっており,収縮抑制効果が得られることが確認できる。 なお,図中には既往の研究^{7),8)}の実験データもプロット(*)し ており,本実験結果と同様な傾向を示していることが確認で きた。既往の研究⁹⁾に示されているように,コンクリートの乾燥 収縮ひずみは,骨材自体の収縮ひずみに大きく影響を受け, 骨材自体の収縮ひずみが表面エネルギーの変化による影 響が卓越している場合は,内部空隙を含む比表面積が骨材 の収縮を支配していることから,比表面積が小さくなるほど骨 材自体の収縮ひずみが少なくなり,それがコンクリートの乾 燥収縮ひずみに影響を及ぼしている要因の1 つとなってい る。ばらつきはあるが両者の関係は,使用したスラグ系細骨 材の種類によらず式(5)で求められる。

このことから使用する細骨材の比表面積が分かれば,要 求される収縮低減率を満足するスラグ系細骨材の混合率を 推定することができる。

図-8 乾燥収縮ひずみの経時変化

表 - 5 終局乾燥収縮ひずみと収縮ひずみ低減係数

	CS	FNS	CUS	BFS
ε (×10 ⁻⁶)	1091	942	906	969
収縮ひずみ低減係数	1.00	0.86	0.83	0.89

$$\gamma = 1 - 0.33 \left(1 - \frac{ASP_S}{ASP_N} \right) \tag{5}$$

ここに,γ:収縮低減係数

なお,比表面積は表 - 1 に示す吸湿率および平衡気乾含 水率と高い相関性があり,比表面積の測定が困難な場合は, こられの値を求めることで簡便に比表面積が推定できるもの と思われる。

4.4 圧縮クリープ

スペシフィッククリープひずみを図 - 10に示す。スペシフィ ッククリープひずみではCSを使用したコンクリートと比較して 載荷期間110日で, BFSは同等, CUSが13%, FNSが21%の 低減率となった。これらのことから、スラグ系細骨材の混合率 50%程度であれば、スラグ系細骨材を用いたコンクリートのク リープは普通骨材に比べて同等あるいは若干小さいことが 確認できた。

本実験で得られた結果を元に、式(6)に示すクリープ予測 式にあてはめCRの値を求めた。その結果を表 - 6に示す。

$$C(t) = CR \cdot log_e(t+1)$$
 (6)
ここに, CR: クリープ定数(10⁻⁶/(N/mm²))
t:載荷時間(日)

そこで,それぞれ得られたクリープ定数をCSのクリープ定 数で除したクリープ低減係数と材齢91日におけるヤング係数 比の関係について検討を行った。ヤング係数比とはそれぞ れのヤング係数をCSのヤング係数で除した値である。これら の関係を図 - 11に示す。これによると、ヤング係数比が大き くなるとクリープ低減係数の値が小さくなっている。このことか

12 -			直とうう		吸标数
		CS	FNS	CUS	BFS
CR(10-	⁶ /(N/mm ²))	20.0	15.7	17.2	19.7
クリーフ	プ低減係数	1	0.78	0.86	0.98
1.1 - 1.1 - 1 - 0.9 -		×	***	[× CS OFNS CUS BFS
18.03	y =	-1.18x + 2.	19	· • .	

図 - 11 ヤング係数比とクリープ低減係数の関係

ら,スラグ系骨材を使用することによりコンクリートのヤング係 数が大きくなり,セメントペーストのクリープを拘束することで クリープが減少する可能性が示唆された。

4.5 収縮ひび割れ

ひび割れ試験結果を表 - 7に示す。また,拘束応力の経 時変化を図 - 12に示す。いずれの試験体も乾燥開始から急 速に拘束応力が増加している。拘束応力がピークを迎えた 後,瞬間的に下がった材齢をひび割れ発生材齢とした。な お,養生期間中において,本実験と同一のコンクリートを使 用して実環境下においてコンクリートの収縮ひずみを計測し た結果,7日までの封緘養生期間中の材齢7日までの収縮ひ ずみが細骨材の種類によらず同等であったため,封緘養生 期間に発生する引張応力は普通コンクリートと同等であると 判断した。封緘養生期間における引張応力については今後

R

CUS

Δ

BFS

試験体の種類		ひび割れ発生 材齢(日)		ひび割れ発生時の 乾燥収縮ひずみ	拘束ひずみ (× 10 ⁻⁶)		拘束度		拘束応力 (N/mm ²)		応力強度比	
		個別	平均值	(× 10 ⁻⁶)	個別	平均值	個別	平均値	個別	平均值	個別	平均值
20	A	23	21	356	235	221	0.62	0.61	2.23	2.12	0.69	0.66
03	В	19	21	309	206	221	0.61	0.01	2.02	2.15	0.62	0.00
ENS	ENS A 29	22	341	211	222	0.60	0.61	2.33	2 /1	0.68	0.70	
TN3	В	36	36 33 3	394	255	200	0.63	0.01	2.49	2.41	0.73	0.70
CUS	A	29	20	342	212	219	0.60	0.61	2.32	2 2 2	0.68	0.69
005	В	31	50	354	224	210	0.61	0.01	2.33	2.55	0.68	0.00
BES	BES A 32		36	377	252	266	0.65	0.64	2.25	246	0.72	0.79
ые	В	39	50	428	279	200	0.63	0.04	2.67	2.40	0.86	0.75
3 2.5 2.5 1.5 1.5 0.5			CS-A FNS-A	CS-B FNS-B	ひび割れ発生材齢(日)	40 30 20 10						

- 7 ひび割れ試験結果

図 - 12 拘束応力の経時変化

30

乾燥期間(日)

40

10

20

R

CS

R

図 - 13 ひび割れ発生材齢

FNS

BFS-B

50

検討していきたい。

ひび割れ発生材齢を図 - 13に示す。表 - 7に示すように 拘束度はほぼ同一であったが,ひび割れ発生材齢はCSを 使用したコンクリートが最も短く,CUS,FNS,BFSの順にひび 割れ発生材齢が延びている。

図 - 14にひび割れ発生材齢と拘束ひずみの関係を示す。 拘束ひずみとは自由収縮ひずみを鉄筋のひずみの差であ る。拘束ひずみは,コンクリートのひび割れ発生材齢が長く なるにつれて大きくなっている。

図 - 15にひび割れ発生材齢と応力強度比の関係を示す。 応力強度比は,最大拘束応力をひび割れ発生時の割裂引 張強度で除した値であり,一般的には0.7程度と言われてい る³⁾。応力強度比は,ひび割れ発生材齢が長くなるにつれ て大きくなっており,CSと比較しスラグ系骨材を用いた場合, 高い応力まで耐えうることが確認できた。

以上のことから,本実験の範囲内においてはスラグ系細骨 材を用いることで,ひび割れ発生材齢が延伸し,収縮ひび 割れ抑制効果が得られることが分かった。

5. 結論

本研究では, FNS,CUS および BFS を使用したコンクリート の収縮低減効果および収縮ひび割れ抑制効果を明らかに することを目的としている。その結果,本実験の範囲内にお いては,CS を使用したコンクリート試験体と比較して以下の 知見が得られた。

- スラグ系細骨材を用いたコンクリートのヤング係数は、 CSを用いたコンクリートのヤング係数より大きくなる。
- スラグ系細骨材を用いたコンクリートの乾燥収縮ひずみは,CSを用いたコンクリートよりも11~17%程度小さくなり,収縮低減効果が確認できた。
- 3) スラグ系細骨材を用いたコンクリートのクリープひずみ は、CSと比較して、同等あるいは 21%程度低減する。 スラグ系細骨材を用いたコンクリートは、CSを用いたコ ンクリートよりひび割れ発生材齢が遅延し、収縮ひび割 れ抑制効果があることが確認できた。

今後もデータの蓄積を行うとともに,実構造物への適用に ついて検討を行なっていく予定である。

謝辞

本研究の実施においては,株式会社関西宇部 堺工場: 安田慎吾氏,株式会社関西宇部 生コン工場の皆様,(株) 淺沼組 建築部の皆様および鉄鋼スラグ協会の協力を得ま した。ここに感謝の意を表します。

参考文献

 日本建築学会:フェロニッケルスラグ細骨材または銅ス ラグ細骨材を使用するコンクリートの調合設計・製造・施 工指針・同解説,2018,12

図 - 14 ひび割れ発生材齢と拘束ひずみの関係

- 2) 齊藤和秀,木之下光男,井原俊樹,吉澤千秋:高炉ス ラグ細骨材を使用した耐久性向上コンクリートの性質, コンクリート工学年次論集,vol.32, No.1, pp.139-144, 2009
- 3) 日本コンクリート工学会:混和材料から見た収縮ひ び割れ低減と耐久性改善研究委員会,2010.9
- 4) 多田克彦,吉本稔,林建佑,河野広隆:石灰石骨材の 微粒分量が汎用強度コンクリートの物性に及ぼす影響, コンクリート工学年次論集,vol.33, No.1, pp.149-154, 2011
- 5) 日本建築学会:鉄筋コンクリート造建築物の収縮ひび 割れ制御設計・施工指針(案)・解説,2007,10
- 6) 今本啓一,石井寿美江,荒井正直:各種骨材を用いた コンクリートの乾燥収縮特性と骨材比表面積の影響,日 本建築学会構造系論文集,第 606 号,9-14,2006
- 7) 原品武,今本啓一,清原千鶴,真野孝次:非鉄スラグ細 骨材を用いたコンクリートの強度特性および乾燥収縮 に関する研究,日本建築学会構造系論文集,vol.83, No.750, pp.1087-1095, 2018.8
- 金子宝以,今本啓一,清原千鶴,大和田紗織:高炉ス ラグ細骨材を用いたコンクリートの乾燥収縮ひび割れ特 性,コンクリート工学年次論集,vol.36, No.1, pp.520-525, 2014
- 9) 後藤幸正,藤原忠司:コンクリートの乾燥収縮に及ぼす 骨材の影響,土木学会論文報告集,第286号,pp.125-137,1979.6