論文 ニューラルネットワークを用いた高流動コンクリートのフレッシュ 性状とレオロジー定数の推定

古賀 志門*1・山田 義智*2・平野 修也*3・東舟道 裕亮*4

要旨:本研究は,高流動コンクリートのスランプフロー試験を対象として,機械学習の一種であるニューラ ルネットワークによりコンクリートのフレッシュ性状(スランプフロー値,500mmフロー到達時間,空気量 等)の推定を試みた。また,既往の研究成果を用いて,スランプフロー値や500mmフロー到達時間よりレオ ロジー定数の推定式を導いた。さらに,ニューラルネットワークで推定したコンクリートのフレッシュ性状 の各値をレオロジー定数の推定式に代入することで,対象となる高流動コンクリートのレオロジー定数を求 めた。得られたレオロジー定数の有用性は,フローの広がり曲線をMPS法にて再現することで検証した。 キーワード:高流動コンクリート,ニューラルネットワーク,フレッシュ性状,レオロジー定数

1. はじめに

コンクリートのフレッシュ性状(スランプやスランプ フロー,空気量など)を制御するためには,セメント量 や単位水量,化学混和剤の使用量や細骨材率などによる 調整とともに,試し練りを行い,目標のコンクリートの フレッシュ性状を得るのが一般的である。しかし,コン クリートのフレッシュ性状は,使用する材料特性や配(調) 合,練混ぜ方法,さらには打込みの際の環境条件や経過 時間によって大きく変化し,目標のコンクリートのフレ ッシュ性状を得るためには技術者の経験則への依存度が 高く,数多くの試し練りを要する場合がある。特に高流 動コンクリートの場合,使用する混和剤や粉体の使用量, さらには練混ぜ条件などの各種要因を調整するために多 くの試し練りが必要である。

高流動コンクリートのフレッシュ性状の調整において、 井波ら¹⁾は高炉スラグ微粉末を用いた粉体系高流動コン クリートの各種要因(環境要因・配合要因・練混ぜ要因) と各性能試験の実測値(スランプフロー値,500mmフロ ー到達時間,空気量,V漏斗流下時間,ボックス充填高 さ)との関係をニューラルネットワーク(以後,NNと 称する)で学習させた結果,各種要因から各性能試験結 果を推定できると報告している。また、丸山ら²⁾は遺伝 的アルゴリズムを用いてコンクリートの要求性能型調合 設計を試みている。これらの研究では、コンクリートを 製造する際の各種要因から目標とするコンクリートのフ レッシュ性状を合理的に実現することを目的としている。 一方,筆者らは、レオロジー定数を入力値として、数 値解析を用いてコンクリートの充填解析を行うことを目 的とした研究を進めている^{3),4}。コンクリートの充填解 析においては、正確なコンクリートのレオロジー定数が 必要であり、煩雑な試験を行わずに、コンクリートに使 用した材料や配(調)合等の各種要因からレオロジー定 数を求めることができれば理想的である。

そこで、本研究では、まず、高流動コンクリートのス ランプフロー試験を対象として、機械学習の一種である NN 学習により、高流動コンクリートの各種要因からコ ンクリートのフレッシュ性状(スランプフロー値、 500mm フロー到達時間、フローの流動停止時間、空気量) の推定を試みた。次に、既往の研究成果 ⁵より、スラン プフロー値や 500mm フロー到達時間からレオロジー定 数の推定式を導いた。

上述の NN 学習とレオロジー定数推定式を併せ用いる ことにより、コンクリートの材料・配(調)合情報、練 混ぜ情報、環境情報(詳細は 2.2 節)より対象となる高 流動コンクリートのレオロジー定数を推定した。さらに 本研究では、推定されたレオロジー定数の有用性を確認 するために、MPS 法を用いて解析的にフローの広がり曲 線(5.2 節参照)を再現して検討したので報告する。

2. 高流動コンクリートのフレッシュ性状の推定方法 2.1 NN による学習について

本研究に用いる NN はバックプロパゲーションアルゴ リズム の(以後, BPA と称す)を用いた。ここでは, 複 数の学習データ(入力および出力データのペア)に対し て,一組ずつ BPA による結果と出力データの二乗誤差 の総和で表せる評価関数 E (式(1)参照)が十分小さく なるように NN に用いる全ての重み係数(閾値も含む) を更新する(式(5)参照)。これを全ての学習データの組

*1 琉球大学大学院 理工学研究科環境建設工学専攻 (学生会員) *2 琉球大学 工学部工学科教授 博士(工学) (正会員) *3 (株)フローリック 技術本部コンクリート研究所主査 修士(工学) (正会員) *4 琉球大学 工学部技術部 修士(工学) (正会員) に対して行い,各学習データに対する評価関数 E(誤差) がすべて十分小さくなるまで繰り返す逐次修正法を用いた。

$$E[n] = \frac{1}{2} \sum_{i=1}^{N_M} \left(y_i^M[n] - d_i \right)^2 \tag{1}$$

ここで、 d_i は出力層(M 層)の i 番目ユニットに入力さ れる実測データであり、 N_M は出力層のユニット数、nは 学習サイクル数を表すパラメータである。また、m 層の i 番目のユニットからの出力 y_i^m [n]は式(2)で与えられ、式 (1)では M 層(出力層)の i ユニットの値 (y_i^M [n])が用 いられている。

$$y_i^m[n] = F(x_i^m[n]) \tag{2}$$

ここで, F(·)はシグモイド関数であり, 次式で表される。

$$F(x_i^m[n]) = \frac{1}{1 + e^{-x_i^m[n]}}$$
(3)

式(1)や式(2)中に現れる*x^m*[*n*]は, 第 m 層 i 番目のユニ ットへの入力の総和を表し, 次式で求められる。

$$x_i^m[n] = \sum_j w_{ij}^m[n] \, y_j^{m-1}[n] \tag{4}$$

式(4)中のw^m_{ij}[·]は重み係数であり, m-1層のj番目の ユニットから m 層 (m=1,2,3,…M)のi番目のユニット への重みを表し,次式で求められる。

$$w_{ij}^{m}[n+1] = w_{ij}^{m}[n] - \eta \frac{\partial E}{\partial w_{ij}^{m}[n]} + \alpha (w_{ii}^{m}[n] - w_{ij}^{m}[n-1])$$

式(5)の重み係数の修正式は最急降下法に基づいており, 目標値への収束性を早めるための重み更新係数 η =0.03 と α =0.04 を用いている。これら重み更新係数の値は事 前学習を行い決定している。

また, m層の1つ下の層に特殊なユニット(バイアス ユニットと称し, 図-1参照)を設けており, ここから の出力は $y_0^{m-1}[n] = -w_{i0}^m[n]$ によって与え, 第 m 層 i 番 目のユニットの閾値 $\theta_i^m[n]$ を表すものとする。

なお,式(5)右辺の偏微分の具体的な解法や,BPAの学

習ステップの詳細については、文献 6)を参照されたい。 2.2 本研究で用いた № について

本研究で用いた NN の概略を図-1に示す。ここでは, データ学習に際し,入力層には材料・配(調)合情報, 練混ぜ情報,および環境情報のデータセットを入力した。 入力層は1層であり,そのユニット数は65個である。入 力層ユニットのデータセットの詳細を表-1に示す。

中間層数およびそのユニット数については,層数は5 層,各層ユニット数は80個と固定した(4章参照)。出 力層は1層4ユニットであり,コンクリートのフレッシ ュ性状(スランプフロー値,500mmフロー到達時間,フ ローの流動停止時間,空気量)がそれぞれのユニットに 入出力される。表-2に出力層の詳細を示す。入力に際 し,セメント種類,練混ぜ機の種類,練混ぜパターンは 数値化できない。そこで,これらに該当する各入力層ユ ニットには1を入力し,該当しない場合には0を入力し

表-2 出力層ユニットの詳細

出力ユニット1	出力ユニット2		
スランプフロー値(数値)	500mmフロー到達時間(数値)		
出力ユニット3	出力ユニット4		
フローの流動停止時間(数値)	空気量(数値)		

理接框起

					シネ ジル 1月 十以			
	セメント種類(7unit:1or0)	水関連	水質別の単位水量 (2unit:数値)	練混ぜ機の種類(3unit:1or0)	コンクリート温度(1unit:数値)			
セメント 関連	製造会社別の単位セメント量 (8unit:数値)		化学混和剤製品別の使 用量(3unit:数値)	練混ぜパターン(3unit:1or0)	練上がり後の経過時間(1unit:数値)			
	セメント密度(1unit:数値)	 化学混和剤 関連	化学混和剤成分の使用 割合(4unit:数値)	練混ぜ時間(1unit:数値)	気温(1unit:数値)			
	岩種分類別の単位粗骨材量 (4unit:数値)		助剤製品別と添加量 (3unit:数値)	練混ぜ量(1unit:数値)	相対湿度(1unit:数値)			
	粗骨材の表乾密度(1unit:数値)	 *1:表中の括弧内に「Ounit:1or0」とある場合、条件に該当するunitには「1」を、該当しない unitには「0」を入力した。(「〇〇種類」や「〇〇パターン」と記した項目)						
如母井内	粗骨材の粗粒率(1unit:数値)	*2:表中の括弧内に「Ounit:数値」とある場合、条件に該当するunitに正規化された数値を入力し、						
相可权 (3) 細骨材 関連	粗骨材の実積率(1unit:数値)	該当し	ないunitには「O」を入: 公籍は	力した。 おいたれいて ①動利(動) の				
	粗骨材のかさ容積(1unit:数値)	▲お:右裡の	J類は、租賃格(禰賃格)において、①砂利(砂)、②併石(幹砂)、③人工整重賃格の3種 盾に加え 微粉末の影響の大きい④石灰石砕石(砕砂)の4種類(4unit)とした。					
	粗骨材の最大寸法(1unit:数値)	第60万類に加え、飯材木の影響の入さい場合取合作石(件型)の4種類(40m1)とした。 *4:水質の分類は、①上水道水と②上水道水以外の水に分類した。 *5:化学混和剤は、練込み型を対象とし、開発にあたりその成分配合を変えた。 *6:練混ぜ機の種類は、①パン型、②強制2軸型、③螺旋アームの強制2軸型の3種類とした。 *7:線混ぜパターンは、①材料一括投入、②モルタル先行練混ぜ、③5分静置(混和剤効果発現)型の3種						
	岩種分類別の単位細骨材量							
	(4unit:数值)							
	細骨材の表乾密度(4unit:数値)							
	細骨材の粗粒率(4unit:数値)	親とし	/C。 /ト会社 現和は種別お上げ化学現和剤制具は教客(あるが 学習効率を考えてunit教を制限					
混和材	混和材種別の単位使用量	1 ^{110.} ビバン「云江,) (近1111)11(1)10.000 (10) - (元111月) 夜田は数多くのるか, 子自効学を考えてUNIT数を制限						
関連	(4unit:数値)	0/20						

表-1 入力層ユニットのデータセットの詳細

结泪北桂起

(5)

た。一方,それ以外の数値化できる入力層ユニットおよ び出力層ユニットの数値データには,以下の式(6)~式(8) による正規化処理を行った。

 $x_{max} = \max(x_1, x_2, x_3, \cdots \cdots x_N) \tag{6}$

 $x_{min} = \min(x_1, x_2, x_3, \dots x_N) \tag{7}$

$$x_i' = \frac{x_i - x_{min}}{(x_{max} - x_{min})} \tag{8}$$

ここで,Nは全データ組数(356組)で,式(6),(7)のmax(…) およびmin(…)は,要因毎のデータ群x_i(i=1,2,3,…,N)から 最大値と最小値を求める演算である。また, x_i は正規 化された i 番目(i=1,2,3,…,N)の数値データの値で,そ の値は0~1の範囲に収まる。

本研究では全データ 356 組の中から,学習に使用しな い未学習検証データとして 56 組を取り分けた。なお,未 学習検証データ 56 組のデータの一部は,5章で行うレオ ロジー定数の推定や MPS 法による検討を目的として, スランプフロー値が大中小となるデータや,配(調)合 が同じで練上がり後の経過時間の異なるデータを一部意 図的に選択している。

一方,残り300組のデータについては,図-2に示す K=3のK-分割交差検証を行い,モデル①~③の交差検証 データを用いてNN学習による学習データと交差検証デ ータの平均誤差をチェックし,平均誤差が最も小さくな る学習モデルを採用した。なお,K-分割交差検証を行う データ分割に際しては,ランダムなデータ組分けとした。

3. スランプフロー試験等の概要

3.1 使用材料と配(調)合

本研究のスランプフロー試験で使用した骨材は,複数 の産地,岩種,密度,粗粒率であり,使用したセメント も複数社製の多種類セメントを用いた。なお,水は上水 道水のみを使用した。また,化学混和剤は複数の構成成 分の組合わせを用意した。

コンクリート配(調)合は,JISA 5308の他,いわゆる 大臣認定配合も含め,複数のW/C,単位水量,s/a,単位 粗骨材かさ容積,化学混和剤使用量の組合わせとしてお り,目標とするスランプフロー値は 55cm~70cmの範囲 とした。

3.2 練混ぜ条件と環境条件

練混ぜには、公称容量 55 リットルの強制二軸ミキサ を使用した。また、流動性の保持性能を比較するため、 一部の試料では、練上がり直後を基点として経過時間 5 分、30 分、60 分、90 分、120 分等の時点でスランプフロ 一値、空気量、およびコンクリート温度の計測を行った。 また、練混ぜを行った実験室の温度は 10~30℃、湿度は 60±5%である。

4. 学習結果と検証結果について

本研究では、全学習データを用いた事前検討の中で、 計算負荷も考慮し、中間層 1~5層、各中間層のユニット 数70~90 ユニットの範囲で学習効率の検討を行った。そ の結果、中間層 5層、各層 80 ユニットで学習効率がよい 傾向が得られた。そこで、今回の学習モデルは、中間層 数を5層、各中間層のユニット数を 80 個で固定した。こ こでは、最大学習回数を 10万回として、300 組のデータ を用いて 2.2節で示した K-分割交差検証を行った。この 検証の際には、学習回数に伴う交差検証データの誤差の 推移を用いて過学習に陥っていないかを確認した。その 結果、図-2に示すモデル③の学習回数 5,000 回の時、 学習データと交差検証データの平均誤差が最も小さい結 果となった(図-3参照)。本研究では、この学習回数 5,000 回時の重み(式(5)参照)を持つ学習モデルを採用 した。

図-4に、採用した学習モデル(学習回数 5,000 回) で計算された学習データおよび、同じ学習モデルで求め られた交差検証データと未学習検証データのコンクリー トのフレッシュ性状(スランプフロー値、500mm フロー 到達時間、フローの流動停止時間、空気量)の推定結果 と実測値との関係を記す。ここで、正規化されたコンク リートのフレッシュ性状の各値は式(8)を用いて元の*x*_i 値に戻している。

図-4 学習データ, 交差検証データおよび未学習データの NN による推定結果と実測値の比較

図-4より、学習データのNNによる推定結果はコン クリートのフレッシュ性状のいずれの値も実測値をよく 捉えており、決定係数R²も比較的高い。一方、交差検証 データの結果ではNNによる推定値は、500mmフロー到 達時間と空気量では実測値を捉えており決定係数R²も 高いが、スランプフロー値とフローの流動停止時間には 多少のばらつきがある。未学習検証データでは、交差検 証データと同様に500mmフロー時間と空気量は実測値 をよく捉えて決定係数R²も高いが、スランプフロー値と フローの流動停止時間は推定値と実測値の間に多少のば らつきが認められる。

表-3に中間層5層,各層80ユニットで356組の全て のデータを10万回学習させた場合のNN学習結果と実測 値の決定係数を示す。同表から推察されるように、学習 データ数を増やして、過学習が起きないように学習回数 を増やすことができれば、さらなる精度の向上が期待さ れる。

本研究では,計算負荷の観点から中間層数やユニット 数を固定した検討を行った。さらに,学習に用いたデー タ数も不十分であり,今後は,中間層数やユニット数を 詳細に検討し,かつ,学習データ数を増やして,精度を 高めることが課題である。また,近年は汎化能力の 高い他の機械学習方法も提案されており,それらの手法 と比較検討を行い,最適な方法を模索していくことも課 題である。

表-3 356 組全データの 10 万回学習結果								
フレッシュ 性状	ッシュ スランプ 500mmフロ 生状 フロー値 到達時間		フローの 流動停止時間	空気量				
決定係数R ²	0. 9261	0.9852	0. 9081	0. 9808				

5. NN と既往研究によるレオロジー定数の推定と検証

本章では、4 章で示した NN を用いて高流動コンクリ ートの各種要因からスランプフロー値と 500mm フロー 到達時間を推定し、これらの値を既往の研究成果を利用 したレオロジー定数推定式に代入することで、降伏値と 塑性粘度求めた。さらに、得られたレオロジー定数(降 伏値と塑性粘度)を用いて MPS 法によりフローの広が り曲線を再現することで、推定式で得られたレオロジー 定数の有用性と、NN によるスランプフロー値と 500mm フロー到達時間の推定結果を検討した。

5.1 コンクリートのフレッシュ性状によるレオロジー定 数の推定方法

(1) 既往の研究成果に基づくレオロジー定数推定式

ここでは、文献 5)にて行われた、球引上げ試験による レオロジー定数とスランプフロー試験結果の関係を基に、 レオロジー定数推定式を求めた。ここで推定式は、スラ ンプフロー値と降伏値の関係式および、500mm フロー到 達時間と塑性粘度の関係式の2つである。

なお,文献 5)では,スランプフロー値の表現をその半 径で扱っているが,本研究では直径そのもので扱ってい る。また,文献 5)ではレオロジー定数を球引上げ試験開 始直後と終了直前の値に分けて検討しているが、その差 は小さいため、本研究では区別することなく用いること にした。さらに、文献 5)では 400 mmフロー到達時間と塑 性粘度の相関が高いとしているが、本研究では一般的に 測定されることが多い 500 mmフロー到達時間と塑性粘度 の関係を用いることにした。

図-5および図-6には、文献5)の実験結果で得られ たスランプフロー値(mm)と降伏値(Pa)の関係、および 500 mmフロー到達時間と塑性粘度の関係をそれぞれ示す。

式(9)に文献 5)の実測結果によるスランプフロー値 $S_f(mm)$ と降伏値 $\tau_v(Pa)$ の近似式を示す。

$$\tau_y = 9473.2 exp(-0.009S_f) \tag{9}$$

また,式(10),(11)に文献5)の実測結果による500mフ ロー到達時間t₅₀₀(sec)と塑性粘度η(Pa・s)の近似式を示す。

 $\eta = 3.7342t_{500} + 14.37 \ (500 \text{mm} \le S_f < 600 \text{mm}) \ (10)$ $\eta = 7.8736t_{500} + 1.308 \ (600 \text{mm} \le S_f) \ (11)$

ここで,スランプフロー値が 500 mm以上 600 mm未満の 場合(式(10))とスランプフロー値 600 mm以上(式(11)) で,500 mmフロー到達時間t₅₀₀(sec)と塑性粘度n(Pa・s)の 関係が異なっている。この理由は、スランプフロー値が 500 mmに近いコンクリートの場合、フローが 500 mmを超 えるとせん断ひずみ速度がかなり小さくなり、塑性粘度 よりも降伏値の影響が大きくなるためと考えられる。

(2) MPS 法の概要

本研究で用いた MPS 法は,田中らが考案した圧力ポ アソン方程式^のを適用して高精度かつ安定的に計算が行 えるように工夫している。ここで,コンクリートを粒子 モデルで表し,全粒子数は40,908 個とした。スランプフ ロー板およびスランプコーンはポリゴンモデルで扱い, これらで生じるコンクリートとの境界面は,ノンスリッ プ条件とした。ここで,スランプコーンは人為的な引上 げによって真上に移動する境界となり,その引上げ速度 は文献 5)を参考に 40mm/sec 一定とした。また,フレッ シュコンクリートの流動構成式は,Bingham model と一 致するように工夫した連続関数である Regularized Bingham model を用いた⁸⁾。

今回用いた MPS 法においては,限界せん断ひずみ速 度以下の粒子が 99%になった時を流動停止と判断した⁸⁾。

図-7に MPS 法による解析に用いた対象モデルの断面 図とコーンの引上げ移動の様子を示す。この図からも分 かるように、本解析では、スランプコーンの影響も考慮 したスランプフロー解析となっている。

文献9)は高流動コンクリートのスランプフローにスラ ンプコーンの影響があることを指摘し、スランプコーン の移動を考慮した解析を行っている。しかし、スランプ コーン形状を円筒形としており、実際のスランプコーン 形状を正しく表現していない。

図-7 MPS 解析モデルとコーン引上げの様子

5.2 NN で推定したレオロジー定数の MPS 法による検証

ここでは、NN 推定で求めたスランプフロー値と 500mm フロー到達時間を用いて降伏値と塑性粘度を式 (9)~(11)より推定し、これらを入力値として MPS 法で解 析を行った。図-8には、実測および NN 推定によるフ ロー500mm とその到達時間、スランプフロー値とフロー の流動停止時間を記号(\oplus , \bigcirc) で記し、併せて MPS 法によるフローの広がり曲線を実線にて示す。図-8(a) は未学習検証データの内、スランプフロー値の最も小さ い試料の結果であり、図-8(b)はスランプフロー値が中 間である試料、また、図-8(c)はスランプフロー値の最 大となる試料である。同図より、実測結果と NN 推定結 果を比較すると、スランプフロー値に多少の相違はある ものの、その傾向は捉えられている。

また, MPS 法による広がり曲線の解析結果は, スラン

図-9 スランプフロー値が中間である試料(図-8(b))の MPS 解析におけるフローの様子

プフロー値が最大の試料(図中(c)参照)についてはよく 再現できているが、スランプフロー値が小さい試料ほど 実測およびNN推定結果よりMPS解析結果の方が流動す る傾向にある(図中(a), (b)参照)。この理由として、スラ ンプフロー値が小さい時、式(9)は降伏値を実際より低め に評価している可能性や、MPS解析の流動停止判定基準 に問題があることも考えられ、今後の検討課題である。

図-9には、スランプフロー値が中間の試料(図-8 (b))の MPS 解析におけるフローの様子とその時の流動 速度を示す。同図より、フロー開始直後でのコーンによ るコンクリート流動の遮蔽や、時間経過によって徐々に 流動速度が遅くなる様子が分かる。これらは、実際のフ ロー試験で体感されることであり、この観点から、本 MPS 解析は実際のフローの再現に有用であると言える。

6. まとめ

NN によって高流動コンクリートの各種要因からコン クリートのフレッシュ性状の実測値を概ね捉えることが できた。より精度を上げるためには、数多くのデータを 蓄積することが課題である。MPS 法は高流動コンクリー トの解析法としての有効性は認められたが、レオロジー 定数の推定結果および MPS 解析結果の精度には課題が 残った。今後、NN と MPS 法に関する上記の課題の克服 により、本研究手法のさらなる精度の向上が期待できる と考えられる。

謝辞:本研究の一部は,平成29年度科学研究費補助金(基盤研究(B)一般,課題番号:17H03344)による助成を受けた。ここに記して感謝の意を表す。

参考文献

1) 井波良太,足立一郎,魚本健人:ニューラルネット

ワークによる高流動コンクリートの性能評価に関 する一考察, コンクリート工学年次論文報告集, Vol.18,No.1,pp.81-86,1996.6

- 2) 丸山一平,長井宏憲,野口貴文,友澤史紀:遺伝的 アルゴリズムに基づく要求性能型調合設計手法の 基礎研究,コンクリート工学年次論文報告集, Vol.22,No.2,pp.823-828,2000.6
- 山田義智,上原義己,崎原康平:BIMと粒子法を援 用したコンクリート充填シミュレーションの試み, 日本建築学会九州支部研究報告, Vol.55, pp.161-164, 2016.3
- 補野真次、山田義智:充填シミュレーションによる これからのコンクリートの施工性能評価、セメン ト・コンクリート、No.853,pp.34-41,2018.3
- 5) 小門武, 宮川豊章: スランプフロー試験による高流 動コンクリートのレオロジー定数評価法に関する 研究, 土木学会論文集, No.634, Vol45, pp.113-129, 1999.11
- ハ名和夫,鈴木義武:ニューロ情報処理技術-基礎 と応用-,海文堂, pp.41-53, 1992
- 田中正幸,益永孝幸:疑似圧縮効果による MPS 法の安定化と圧力の平滑化, Transaction of JSCE, 20080025,2008.10
- と原義己,崎原康平,山田義智,浦野真次:高精度
 手法を用いた MPS 法によるフレッシュコンクリートのスランプ解析に関する一考察, Cement Science and Concrete Technology, Vol.67, PP.626-633,2013.3
- 小門武,細田尚,宮川豊章:数値流体解析による高 流動コンクリートのレオロジー定数評価法に関す る研究,土木学会論文集,No.648, Vol.47, pp.109-125, 2005.5