論文 地盤断層と地中 RC ボックスカルバートの相互作用と損傷モード

山野井 悠翔*1・前川 宏一*2

要旨:地盤断層の進展延長上にある地中RCボックスカルバートの挙動を地盤一構造連成系のせん断問題と して扱い,構造躯体の損傷モードの影響因子を分析検討した。側方地盤の領域寸法の違いによって地中構造 の損傷モードが変化するとともに,地表面に至るまでの地盤断層の伸展モードも,地中構造の損傷に応じて 変化することが示された。既報で指摘されてきた通り,人工軟岩等の弱層が地盤断層変位を吸収し,地中構 造躯体の損傷を軽減する挙動が,数値解析においても再現された。鉄筋に沿った腐食ひび割れの存在も,地 盤弱層と同様の機能により,躯体損傷モードに影響を及ぼすことが示された。

キーワード:断層, せん断破壊, ポストピーク, 破壊力学

1. はじめに

地震動に対する地上構造物の耐震性能に関する検討が 活発に進められてきた一方で,地盤断層変位に対しては 発生頻度が低いこと,発生時の作用が甚大であることな どから,断層変位が想定される地点には構造物を配置し ない措置が設計計画段階から取られてきた。しかし,1999 年の台湾集集地震では石岡ダムに断層が直撃し,甚大な 被害が生じた。1930年の北伊豆地震では,丹那トンネル の断層被害が報告されている^{1),2)}。地震活断層から派生 する地表地震断層の予測の難しさを鑑みれば,局所化し た地盤せん断変形である断層の進展と構造物との相互作 用の知見の蓄積は,今後も必要と考えられる。

巨大地震の経験を踏まえ,設計上の限界状態を越えた 場合でも,速やかな復旧が求められる。断層変位が作用 した際の地中構造の損傷挙動を把握しておくことは,地 中空間の利用が不可欠な都市で特に重要である。岩盤断 層や地盤せん断帯変位は,せん断変形の局所化として数 値解析で再現することができる。

本研究では、断層進展の延長にある構造物の挙動を地 盤一構造連成系のせん断問題として扱うことで、進展す る地盤断層の延長上にある地中鉄筋コンクリート(RC) ボックスカルバートの損傷モードについて、影響因子の 分析を行った。

2. モデル概要

2.1 対象構造物

対象構造物は高さ4m,幅8m,長さ100mの単ボック スカルバート構造であり、図-1 に躯体の外観と要素分 割を示す。本検討では図-2 に示すように、岩盤に躯体 が直接設置され、土被りが5mである状況を想定し、計 算簡略化のために面対称モデルを採用した。深さ5m部 分の岩盤に強制変位を与えることにより,逆断層型の断 層変位が生じる際の挙動を検討した。構造側に厳しい損 傷を再現することを意図して,長手方向には接合部を設 けていない。接合部でのせん断ずれで断層変位を吸収す ることができない条件としている。

2.2 使用物性及び解析モデル

表層地盤と岩盤には Multi-Yield Surface 塑性理論に基 づいた非線形構成則³⁾を持つ三次元ソリッド要素を配置 した。地盤要素の非線形性を異なる剛性及び強度を持つ

*1 横浜国立大学大学院 都市イノベーション学府 都市地域社会専攻 (学生会員)

*2 横浜国立大学 都市イノベーション研究院 教授 (正会員)

有限の完全弾塑性ばねの重ね合わせで表し,ひずみの局 所化を考慮することで構造体としての軟化挙動を再現す ることができる。一方,カルバート躯体には多方向非直 交ひび割れを考慮できる RC 構成則 4を適用した。せん 断及び体積ロックを回避できる 3D-8 節点 Enhanced Strain 要素を用いた。せん断一体積変形の強い連成を呈する地 盤要素に対しては,ひび割れと鋼材降伏による急激な剛 性低下を伴う RC 要素と同様に,全ひずみ一全応力型で 履歴特性を計算に反映した。

表-1と表-2に各要素に用いた物性の入力値を示す。 岩盤の固結性を表すために、地盤構成モデルの相対密度 を99%に設定し(負の shear dilatancy がほぼゼロ)、岩盤 の1軸引張強度に相当する粘着強度を与えた。せん断強 度に達する前後の内部摩擦角を定義することにより、岩 盤の残留せん断強度がピークの約 1/4 となるように、せ ん断軟化挙動を規定した。岩盤のせん断帯の寸法を 0.5cm とし、要素寸法に応じたせん断軟化曲線から、破 壊エネルギーの要素寸法非依存性を確保した⁴⁾。RC 躯体 には軸方向に 0.5%の鉄筋を設定した。

物性	単位	表層地盤	岩盤
せん断剛性	MPa	175.0	520.0
せん断強度	MPa	0.255	1.76
密度	N/m ³	1.8	1.7
相対密度	%	50	99
粘着力	MPa	0.162	0.491
内部摩擦角	degree	30	35
せん断軟化域	degree	20	10
の内部摩擦角			
せん断帯	cm	0.5	0.5

表-1 解析に使用した地盤物性

物性	単位	RC 要素
静弹性係数	MPa	21, 600
ポアソン比	-	0.2
圧縮強度	MPa	29.4
密度	g/cm ³	2.5
引張強度	MPa	2.55

表-2 解析に使用した RC 要素物性

2.3 解析条件

地中 RC カルバートに断層が作用する過程として,自 重のみを載荷する初期自重解析と,その後に地盤最下層 に強制断層変位を与える非線形応答解析の2段階に分け た。それぞれの解析時の拘束条件を表-3 に示す。自重 解析時は,地盤側面を鉛直ローラーとし,底面のみ完全 拘束とした。断層変位応答解析時は底面及び断層変位載 荷点を完全拘束し,対称面と壁側背面は鉛直ローラーを 維持し,長手方向開口面の表層地盤部分のみ自由とした。 断層変位は体積膨張を伴うため,側方の拘束条件は解析 結果に影響を及ぼす。本解析では側方地盤境界でx方向 (図-2)の変位を拘束し,無限遠方を模擬した。現実に は断層帯は有限の幅を有し,断層の切れ目ではx方向の 拘束が緩まるであろうが,地表面近傍に限定されると考 えられる。ここで,上岩盤及び下岩盤とは,断層面に沿 ってせり上がる岩盤を上岩盤,相対的に下側に位置する 岩盤(静止側)を下岩盤と定義する。

	自重解析	断層変位応答解析	
対称面	x方向のみ拘束	x 方向のみ拘束	
壁側側面	x方向のみ拘束	x 方向のみ拘束	
上岩盤側	y方向のみ拘束	表層地盤, 躯体部は自	
開口面		由, 岩盤部完全拘束	
下岩盤側	y方向のみ拘束	表層地盤, 躯体部は自	
開口面		由,岩盤部 y 方向拘束	
底面	完全拘束	完全拘束	

表-3 各解析時の拘束条件

すべり面が同時かつ不連続に運動するのではなく,岩 盤下部の局所的な破砕から,急速に上方に向かって進展 していく断層の動的変位を数値上で再現するために,上 岩盤の底面及び開口面において,y,z方向に同量の強制 変位を岩盤底部に与えた。図-3 は地中構造を含まない 単一地盤とし,岩盤の上に表層地盤のみが存在する条件 としている。岩盤端部での強制変位が 5cm,10cm,20cm, 40cmの時の断層伸展挙動を示す。設定した剛性と軟化特 性においては,せん断帯は同時には形成されない。

図-3 数値解析上の断層伸展挙動

予め設定した接合要素で断層面をモデル化する場合と 異なり、岩盤端部で与えられた強制変位は岩盤全体の連 続体変形で吸収されつつ、ひずみの局所化によりせん断 帯が形成される。徐々に局所化されたひずみ領域が伸展 した結果として、最終的な断層帯が形成される。岩盤下 部の断層ずれと構造位置および地表面での断層変位が実 現象と同様に異なる点に、本研究のポイントが置かれて いる。

断層変位の滑り速度は時間依存を有するため,地盤と 構造の質量に基づく慣性力が作用する動的問題である。 予備解析からも,岩盤下部の断層ずれ変位速度に応じて 断層変位と構造せん断損傷の位置は異なるが,その差は 僅かであった。本解析で用いたコンクリート構成則は時 間依存性を考慮しており,高ひずみ速度下で見かけの強 度は高くなる。本研究ではコンクリート躯体に不利とな る境界条件を考慮して,載荷速度は実際の断層滑り速度 よりも遅い 1cm/s とし,地盤の慣性力をほぼ無視した条 件を設定した。

図-4 に、微小変位-材料非線形解析と大変位-材料 非線形解析の結果の比較を示した。いずれの解析も Piola-Kirchhoff 応力と Green ひずみに基づく構成則を適 用している。したがって、後者の解析で大せん断ひずみ 領域を扱うと、要素体積が過度に収縮する場合がある。

図-4 幾何非線形考慮の影響

岩盤と地盤のみの場合,変形の局所化の分布は幾何非 線形の考慮の有無に大きく左右されない。地中に躯体が 存在する場合には、上層地盤でのひずみの局所化に違い が現れているが、概ね断層の伸展挙動や躯体の損傷モー ドの変化は見て取れない。そこで、大変位を考慮した場 合でも構造応答に大差ないこと、本研究で用いた構成則 は複合大変位—大変形に適合させていないことを考慮し て、微小変位—材料非線形解析で検討を進めた。大変位 一大変形での検討は今後の課題としたい。

3. 表層地盤領域の違いによる損傷モードの変化

3.1 検討ケース

地盤一構造複合系として断層変位に対する地盤と構 造の応答を把握するにあたり, 躯体周囲の表層地盤をど こまで考慮するかが問題となる。そこで, 図-2 中に示 す, 躯体の壁の背面にある地盤(以後, 側方地盤)の厚 さを 0m, 4m, 16m, 36m と変化させ, それぞれを W0, W4, W16, W36 として挙動の違いを比較検討した。

3.2 損傷モードの比較

図-5 に断層変位 40cm 時の各検討ケースの主ひずみ コンター図を示す。側方地盤の存在により躯体の挙動だ けでなく、表層地盤での断層の伸展挙動も有意に変化す ることが分かる。岩盤の軟化以後の残留強度を大きく設 定したところ、岩盤断層の伸展挙動も側方地盤の存在に より変化すること(相互作用)が解析上で確認された。

側方地盤が無い W0 ケースとそれ以外では、断層による躯体の損傷度が異なり、側方地盤の存在が躯体の損傷 モードに及ぼす影響は無視できない。W0 では、岩盤から伝達される断層変位が全て躯体底面に作用するため、 底版付近の壁でせん断変形が端部まで広がり、上層地盤 まで断層が貫いている。しかし、躯体の存在によって岩 盤と表層地盤での断層帯の位置にはずれが見られる。

図-5 側方地盤領域の違いによる損傷モードの変化

一方,側方地盤 W0,W16 及びW36 では,側方地盤が 下側の岩盤と連動することで,底版付近の壁のせん断変 形は抑制され,地下構造の躯体はせん断モードで引き裂 かれ,上層地盤にまでせん断帯が進展する。側方地盤の 挙動を見ると,断層の伸展挙動が構造物の存在で影響さ れていることが分かる。背面と対称面の断層変位を比較 すると,躯体の影響が小さい背面では地表まで直線的に 断層が伸展するのに対し,対称面では躯体の影響で,上 層地盤のせん断層帯の幅が広がっている。以上より,断 層挙動を考慮するには,地盤・構造連成系を三次元で検 討することが不可欠であることが分かる。

側方地盤が大きいほど, 躯体の存在が断層の進展に及 ぼす影響は小さくなり, 直線的に断層が伸展する傾向が 強まる。しかし, W16とW36を比較すると,表層地盤の 断層伸展挙動に多少の違いが見て取れるが, W16の方が 躯体の損傷程度が大きいこと,W36においてW16の背 面に相当する断面での挙動に大きな違いが無いことから, 側方地盤が16m程度あれば,それ以上地盤があった場合 と同様の挙動を安全側に評価できると考えられる。した がって,以後の検討ではW16を採用することとした。

4. 断層変位に対する躯体の損傷モード

4.1 構成部材ごとの損傷モードの内訳

逆断層型の断層変位による躯体への作用には、上下方 向にずれを生じさせるせん断と、それに伴って躯体軸方 向に長さを縮める(圧縮)作用がある。図-6,図-7は 岩盤最下部での断層強制変位が40cm時の、地中 RC 箱 型カルバートの全体変形と、構成部材の主ひずみコンタ 一図(二分の一対称の片側)である。前者は対称面、後 者は内部から長手方向を眺めた際の損傷モードである。

図-6 躯体の損傷モード

岩盤最下部から進展した地盤せん断変形はコンクリート底版部を貫通し,壁にもせん断損傷を与えていることがわかる。その結果,壁の広い範囲でひずみが卓越し, 断層直撃部で底版のせり上がりが確認できる。同様の損 傷モードが 2004 年の中越地震時の魚沼トンネルや,2016 年の熊本地震時の俵山トンネル等で報告されている^{5,6}。 壁のせん断変形はコンクリートの崩落に繋がり,底版の せり上がりは,局所的な機能喪失のみならず,軸方向の 勾配の変化としても,甚大な機能低下をもたらすものと 考えられる。

次に、逆断層変位が及ぼすせん断と圧縮の作用に対し て、個々の部材がどのような応答を示しているのかを把 握するために、破壊前後の耐荷機構の変遷を図-8 に整 理した。

図-8 断層作用時の躯体の応力状態変化

YZ 方向のせん断応力のコンターでは、逆断層によっ て作用するせん断力方向のせん断応力が大きい部分が赤 色で示されている。断層のずれによるせん断に対しては、 部材厚の薄い底版や頂版は比較的滑らかに変形し、主に 壁が耐荷機構を担っている(図中①)。壁の斜めせん断破 壊が最初に生じ、断層延長線上の壁のせん断応力は消散 し、上岩盤側へと移行していく(図中②)。水平方向にカ ルバートが圧縮され、壁が抵抗できなくなるため、底版 と頂版に圧縮力が移行する。

しかし、底版と頂版は曲げ変形と同時に圧縮変位も強 制されるため、底版及び頂版にも局所的なせん断破壊が 生じる。その結果、軸方向の圧縮応力は消散し(図中③), 表層地盤まで断層変位が連続、すなわち断層の突き抜け が数値解析上、予見された。断層が表層まで突き抜ける と、上岩盤側の壁には断層作用とは逆向きのせん断応力 が発生し、せん断応力の正負の境目にあたる底版付近で ひずみが蓄積される(図中④)。底版付近のひずみは分析 すると Z 方向のひずみが卓越しており、開口挙動を示し ていた。これは断層のずれに伴う体積膨張が生じた結果、 せん断応力の正負の境目で局所的に曲げモーメントが働 き、底版付近の壁で開口が生じたと考えられる。以上の 過程の全てを実験で再現し、検証することは容易ではな いが、ポイントを押さえた実証実験を組み合わせること は今後、可能と思われる。

5. 損傷モードの制御

5.1 人工軟岩を用いた損傷制御

柏崎刈羽原子力発電所の建設では,基礎岩盤の軟岩と 基礎コンクリートとの剛性差による応力集中が懸念され たため,置換材料として人工軟岩が開発され⁷,実際に 建屋基礎の一部として使用された。この人工軟岩が断層 変位の進展を吸収し,構造躯体の損傷を軽減することが 既に考えられていた。ただし,著者らの知る限りにおい て,定量的な議論は見出されなかった。

そこで、W16と同様の条件のもとで、躯体底版の下部 に、人工軟岩に見立てた相対的に弱い層を挿入し、損傷 モードに関する分析を進めることとした。人工軟岩には、 無筋コンクリート要素(以下 PC 要素)を配置した。施 工された人工軟岩の物性を参考にして表-4 に示す物性 を設定し、厚さ 200cm の人工軟岩層を配置した。断層変 位 40cm 時の主ひずみ分布を図-9 に示す。

物性	単位	PC 要素		
静弹性係数	MPa	957		
ポアソン比	-	0.46		
圧縮強度	MPa	3.0		
密度	N/m ³	1.75		
引張強度	MPa	0.667		

表-4 人工軟岩解析用物性

図-9 弱層を挿入した際の損傷挙動

図-6 と図-9 を比較すると,弱層の挿入により損傷モ ードが有意に変化していることがわかる。岩盤と躯体間 の人工軟岩がせん断変形を生じ,岩盤から躯体への作用 が軽減され,壁の水平方向の圧縮と底版・頂版両者の局 所化変形も小さくなっている。地下構造躯体と岩盤との 固着力は軟岩のせん断破壊により,自ずと減少する。下 岩盤側の底版が容易に岩盤から剥れるため,底版のせり 上がりは広範囲にわたり,変形の局所化が緩和されてい る。弱層が免震装置のような振る舞いを呈しているよう である。弱層の配置や層厚を工夫することにより,損傷 制御効果が大きくなることが期待されるため、更なる検 討を今後進めていきたい。

5.2 腐食ひび割れと損傷モード

人工軟岩と同様に,弱部が構造全体の損傷モードを変 えるものとして,主鉄筋に沿う腐食ひび割れが過去に検 討されている。梁の静的載荷試験では,主鉄筋の腐食ひ び割れの発生により,鉄筋とコンクリートの付着が変化 し,せん断破壊モードが軽減,消失することが示された ⁸⁾。地中構造を想定した検討例としては,強制的に腐食を 導入した RC ボックスカルバートの耐震性能を評価した 事例がある。隅角部のせん断破壊が卓越した損傷モード から,主鉄筋に沿う腐食ひび割れの開口が卓越した損傷 モードへと変化し,構造耐力は殆ど影響を受けなかった ⁹⁾。鉄筋とコンクリート間の付着低下は人工軟岩を挿入 し,弱部を設けたケースに類似しており,腐食ひび割れ により,底版の損傷モードが変わることも予想される。

腐食に伴う力学挙動を数値解析上で表す手法として, 鉄筋軸直方向の構成則に腐食生成物の発生に伴う膨張歪 の影響を組み込んだ Multi-Mechanical Approach が提案さ れており¹⁰,本解析もこの手法を用いて地盤断層の進展 と腐食による損傷の相互作用を検討した。腐食の程度は, 腐食による鉄筋重量減少量を単位長さ当たりの鉄筋周面 積で除した値である腐食率で表すことができる。腐食ひ び割れが発生する程度の腐食を再現するために,実験結 果から得られたかぶりの無次元量とひび割れ発生時の鉄 筋重量減少量の関係を参考にした¹¹⁾。鉄筋径 22 mm,か ぶり 50 mmと考え,鉄筋重量減少量が 3%時の腐食率が概 ね 0.2g/cm²であることを鑑み,この値で検討を行った。 W16 と同様の条件で底版全体に腐食率 0.2g/cm²を与えた 際の損傷を図-10 に示す。コンターは主ひずみを表し, 岩盤下端の断層変位が 38cm の際の挙動を示す。

図-10 底版全体が腐食した際の損傷モード

図-6と図-10を比較すると、底版が腐食し剛性が低下 したことによって損傷が分散し、弱層を設けた場合程で はないが、底版の局所的なせん断ずれは緩和され、損傷 モードが変化した。腐食部分を限定して損傷モードの変 化を検討したところ、腐食部分と健全部分の境界部に損 傷が集中する損傷モードが見られ、その境目が上岩盤上 の底版で、せり上がりに伴う負のモーメントが大きくな る部分に位置すると、損傷が軽減された(図-11)。

図-10 と図-11 を比較すると腐食部分を底版の一部分 に設けた場合,底版の局所的なせん断破壊が見られなく なり,底版が滑らかに変形していることが分かる。断層 面が版の下部に及ぶ以前では,上岩盤がずれようとする 際に底版は上方に凸にたわみ,負の曲げモーメントが発 生する。この領域に弱部となる腐食が存在すれば塑性ヒ ンジの形成は加速され,結果として断層によるせん断力 が軽減されることによるものと考えられる。腐食ひび割 れの存在は地上構造と同様に,地下構造に対しても損傷 モードに有意な影響をあたえるものと予想される。トン ネル構造物では軸方向の鉄筋は構造上,空間維持のため の耐荷機構を直接担っていない。人工腐食を損傷制御の ひとつとして考えることは,少なくとも数値解析の上で 可能である。

6. まとめ

地盤一構造連成系のもとで断層変位に対する地下 RC カルバートの損傷モードを,せん断変形の局所化に関す る非線形数値解析を用いて検討した結果,以下の知見が 得られた。

- 表層地盤が構造躯体に及ぼす影響 側方地盤の存在は地中構造躯体の損傷モードに無 視できない影響を及ぼすが、その領域幅は構造躯体 幅の4倍程度と見積もられ、それ以上の側方地盤の 存在は構造躯体の損傷モードには影響しない。
- 2) 断層変位に対する耐荷機構

逆断層型の断層変位による地中構造躯体への作用 は、躯体軸直交方向のずれ(せん断)と、躯体軸方 向に躯体を縮ませる圧縮にそれぞれ分けて考えら れる。壁のせん断変形は断層進展の早期に局所化し、 相対的に高い変形能を有する頂版と底版は、曲げ変 形モードで地盤断層変位を吸収する損傷モードを 示す。さらに断層による軸方向の圧縮作用が卓越す ると、底版と頂版共にもせん断破壊が生じ、壁はせ ん断変形がさらに局所化した複雑な損傷モードを 呈す。

3)人工軟岩による損傷モードの変化 地中構造躯体と岩盤との間に弱層(人工軟岩)を設 けることにより、地盤断層変位が弱層に吸収され、 躯体の損傷が軽減される過程が示された。

4)人工腐食による損傷制御効果 RC 構造躯体底版部に腐食ひび割れを数値解析の中 で導入すると、人工軟岩の場合と同様に、地盤断層 変位の吸収が見られ、躯体の損傷モードは変化した。 これは、主鉄筋定着部近傍に、鉄筋にそって人工的 に損傷面を設けた既往の RC 梁の実験と同様の変形 モードとなった。そして、腐食箇所によっては大き な損傷制御効果を得られることが数値解析上で確 認できた。

参考文献

- 大町達夫:1999年台湾集集地震によるダムの被害に ついて、ダム工学 Vol.10, No.2, 2000
- 2) 櫻井孝:北伊豆地震(1930年)による丹那トンネル 内地震断層出現状況記録.,応用地質,第39巻,第6 号,540-544頁,1999
- K.Maekawa , A.Pimanmas , H.Okamura : NONLINEAR MECHANICS OF REINFORCED CONCRETE, CRC Press, 2003
- Masoud Soltani , Koichi Maekawa : Numerical simulation of progressive shear localization and scale effect in cohensionless soil media, International Journal of Non-Linear Mechanics, 2014
- 5) 小長井 一男:活褶曲地帯の地震被害・対応データ アーカイブスの構築,生産研究,57巻6号,2005
- 6) 蒋 宇静ら:平成 28 年熊本地震に係る道路トンネル被災状況緊急調査報告,土木学会 委員会サイト,2016
- 7) 岸 清, 百瀬 和夫, 深沢 栄造:人工軟岩材料の 開発, コンクリート工学年次論文報告集, 12-1, 1999
- Kiyoshi Okada , Kazuo Kobayashi , Toyoaki Miyagawa : Influence of Longitudinal Cracking Due to Reinforcement Corrosion on Characteristics of Reinforced Concrete Members, ACI STRUCTURAL JOURNAL, 85-S16, 1988
- 9) 松尾豊史,松村 卓郎,遠藤 達巳,金津 努:鉄 筋腐食を考慮した鉄筋コンクリート構造物の力学 性能評価,一般財団法人 電力中央研究所,2002
- Kukrit Toongoenthong, Koichi Maekawa : Multi-Mechanical Approach to Structural Performance Assessment of Corroded RC Members in Shear, JCI, Vol.3, No.1, 107-122, 2005
- 堤 知明,松島 学,村上 祐治,関 博:腐食ひ び割れの発生機構に関する研究,土木学会論文集, No.532, V-30, 159-166, 1996