論文 降伏ヒンジ領域に超弾性合金主筋を用いた RC 梁の構造性能に及ぼ すせん断補強筋の影響に関する解析検討

梅本 純也*1・鈴木 裕介*2・谷口 与史也*3・荒木 慶一*4

要旨:本研究では,主筋の一部に超弾性合金を配筋した RC 梁の既往の実験において早期の剛性劣化に繋が ったと考えられる,梁端部でのせん断変形および,せん断ひび割れの低減効果に対し,当該領域でのせん断 補強筋量及び配筋位置をパラメータとした FEM 解析を通して検討した。その結果,せん断補強筋比を上昇さ せることで,せん断変形が抑制され,部材全体の剛性低下が改善されることを示した。また,力学モデルに 従った集中配筋型の試験体は,せん断補強筋が概ね想定通りの応力負担をしたものの,部材全体の性能改善 に対する寄与は想定より小さいものであった。

キーワード:超弾性合金, せん断補強筋, せん断ひび割れ, 剛性低下率, FEM 解析

1. はじめに

中大規模地震により被災した場合であっても、建物の 構造性能維持と早期回復を目的とした,自己復元構造の 開発が注目されている¹⁾。筆者らは、鉄筋コンクリート (以下, RC) 骨組構造を対象に、建物の各部材が大変形 を経験した後でも残留変形及び損傷を微小に抑える目的 で、梁の降伏ヒンジ領域における主筋の一部に、銅系

(Cu-Al-Mn)の超弾性合金 (Super-Elastic Alloy 以下, SEA)を用いた自己復元型 RC 構造の開発研究を進めて いる^{2)~4)}。文献 2)~4)では,静的実験及び FEM 解析 を通して, SEA の超弾性特性により部材の残留変形及び 残留ひび割れを,極めて小さく抑えられることを示した。 同時に,SEAの力学特性(強度及びヤング係数)が一般 の鉄筋よりも低いことで通常の RC 梁に比べ部材耐力及 び剛性が小さくなるといった課題に対し, SEA の配筋位 置を梁端から中央側へ移行し、その位置にヒンジ形成さ せることで、各性能を改善でき得ることを実証した。し かし、図-1に示すように、実験ではヒンジ形成断面か ら梁端側における斜めひび割れが大きく進展したことが 影響し、当領域を剛と仮定して算出した計算値に比べ、 実験での二次勾配(ひび割れ発生後の剛性)が小さくな る結果となった。そこで本研究では、当領域で生じるせ ん断変形及びそれに伴う斜めひび割れ(せん断ひび割れ) の進展を抑制する目的で、せん断補強筋比や配筋位置を

図-1 部材角 2%時のひび割れ状況 (SEA 配筋位置内(赤線領域)で塑性ヒンジ形成) パラメータとした FEM 解析を実施し, せん断補強筋が 当領域の変形及び損傷, 並びに, 部材全体の構造特性に 及ぼす影響について検討している。

2. 解析対象の実験概要

2.1 試験体概要及び使用材料

解析対象は,文献 2) で報告された SEA が配筋された 試験体である。図-2 に解析対象試験体の形状及び配筋 詳細を示す。試験体は,断面 $b \times D=100 \times 150$ mm を有す る梁部材であり,その両端に梁に対し十分に剛とした加 カスタブが設けられている。梁部材の配筋詳細として, 主筋は 2-D10, せん断補強筋は 2- φ 4@50 である。実験変 数は,SEA の使用の有無及び配筋位置で計4種類の試験 体が検討されている。本解析では,梁端主筋を SEA に代 替した SEA(0D),及び,梁端から 1.0D (D:梁せい)の 位置に降伏ヒンジが形成されるよう計画した SEA(1.0D) 試験体 (図-2 参照)計 2 体を解析対象とした。表-1 にコンクリートの,表-2 に各補強筋の材料特性を示す。 コンクリートは $F_c = 30$ MPa である。梁主筋には SD295 を,せん断補強筋には SR295 を使用している。

2.2 加力・測定方法

加力方法は、図-2 中に示すように梁部材中央を反曲 点とした逆対称4点曲げ載荷であり、部材角R=0.125~ 2.0 rad.までの変位制御による静的漸増片側繰返し載荷 で実施された。主な測定項目は、荷重、両端の加力スタ ブに取り付けた鉛直方向変位計の測定値と梁スパン (700mm)から算出した梁部材角、図-3 に示す各区間 (A~D)の材軸方向変位から算出した曲率及び各補強筋 のひずみ度である。

*1	大阪市立大学	大学院工学研究科	(学生)	会員)	
*2	大阪市立大学	大学院工学研究科	講師	博士(工学)	(正会員)
*3	大阪市立大学	大学院工学研究科	教授	博士(工学)	(正会員)
*4	名古屋大学	大学院環境学研究科	教授	博士(工学)	(正会員)

3. 解析概要

3.1 材料モデル

図-4 にコンクリートの引張側及び圧縮側構成則を示 す。コンクリートのひび割れモデルとして全ひずみ回転 ひび割れモデルを採用し、コンクリートの引張側構成則 は, 引張強度までを線形弾性, 引張強度後の下降域を大 岡氏らの提案式のにより評価し、マルチリニア型でモデ ル化した。下降域で囲まれる面積は引張破壊エネルギー G_f (式(1))を要素代表長さ L_c で除したものとした。圧 縮側構成則は Parabolic 型⁷でモデル化し、中村らの提案 式⁸⁾(2)から算出した圧縮破壊エネルギーG_{fc}を要素代 表長さで除したものとした。なお、要素代表長さLcは各 コンクリート要素の体積Vと等価な体積を有する球の直 径とし、式(3)により算出した。SEA 及び各鉄筋の応 力ひずみ曲線はバイリニアとし、主筋(D10)及び SEA の材料特性は材料試験の値を採用した。せん断補強筋 (q4) については、文献 2)において引張強度のみの掲載 のため、主筋の降伏比と同等となるよう降伏応力度 400 MPa, ヤング係数 205GPa としてモデル化した。

3.2 解析モデル

図-5に加力方法及びメッシュ分割図を示す。FEM 解 析には、汎用解析コード DIANA10.2⁵⁾を使用し、三次元 モデルで実施した。コンクリートは 25×25×25mm の六 面体要素に置換し、各鉄筋や SEA はすべて埋め込み鉄筋 として要素内に配置した。鉄筋とコンクリートの付着は 完全付着とした。なお、解析対象のせん断補強筋は丸鋼 を使用しているが、後述5章において、せん断補強筋の 影響をより明確に評価するため、並びに、継続的に実施 している実験研究(未発表)では、異形棒鋼を使用して いるため、今後を見据え完全付着として検討している。 境界条件として、実験時の条件と合わせ載荷点及び支点 の4点をピンローラーとした。載荷方法は、変位制御と して載荷点に-Z 方向へ強制変位を与え、部材角が 2%に なるまでの単調漸増載荷とした。

試験体	材齢	圧縮 強度	ヤング 係数	割裂 強度		
	d	MPa	GPa	MPa		
SEA (0D)	37	40.4	29	3.31		
SEA (1.0D)	38	40.6	29	3.03		
50,100,100,100 50,100,100,100						

図-3 曲率測定区間

表-1 コンクリートの材料特性

表-2 各補強筋の材料特性

		降伏	引張	降伏	ヤング	
補強筋種類	矵	応力	強度	ひずみ	係数	
		MPa	MPa	%	GPa	
SEA (0D)	M10	179.3	-	0.73	25	
SEA (1.0D)	MIU	201.6	-	0.68	30	
主筋*	D10	362.9	502.4	0.19	186	
せん断	(04		560.3			
補強筋	ψ4	-	500.5	-	-	

(b) SEA 鉄筋継手部

図-2 試験体形状, 配筋詳細及び SEA 鉄筋継手部

図-4 コンクリートの引張側及び圧縮側構成則

$$G_f = \frac{0.23 \cdot \sigma_B + 136}{1000} \tag{1}$$

$$G_{fc} = 8.8 \sqrt{\sigma_B} \tag{2}$$

$$L_c = 2 \times \sqrt[3]{\frac{3 \cdot V}{4 \cdot \pi}} \tag{3}$$

ここに、 G_f :引張破壊エネルギー、 G_{fc} :圧縮破壊エネル ギー、 σ_B :圧縮強度、V:体積である。

4. 解析結果と実験結果の比較

4.1 せん断カー部材角関係

図-6にせん断力-部材角関係を,表-3に各強度の実 験と解析の比較を示す。どちらの試験体も実験値が2割 から3割程度ひび割れ時のせん断力が小さかった。これ は解析において乾燥収縮を考慮していないためと考える。 どちらの試験体でもひび割れ時及び降伏時では実験値の 方が小さく最大では実験値の方が大きくなった。これは 鉄筋の降伏後のひずみ硬化を考慮にいれていないため, 解析において主筋降伏後の耐力上昇があまりなかったた めと考えられる。しかしいずれの値も2割程度の誤差に 収まっているため概ね良い対応をしていると考える。ま た,解析のみにおいて SEA(1.0D)の部材角0.1%付近でせ ん断力の一時低下が生じた。これは、梁端からSEA 配筋 位置の範囲にわたってひび割れ発生と認められるひずみ に達した要素が多く生じたことが影響したためと考えら れ、要素分割や載荷ステップの精査が必要である。

4.2 曲率一部材角関係

図-7 に曲率-部材角関係の実験と解析の比較を,図 -8 に実験と解析の部材角 2%におけるひび割れ状況と 引張主ひずみのコンター図を示す。曲率の解析値は,梁 上面下面における対象区間の節点の変位差をその区間で 除してひずみを求め,上下面のひずみ度と梁せいから算 出したものである。曲率の大きさは実験と解析で多少の 差はあるものの進展している区間は一致している。損傷 状況について,実験では小変形時に SEA 配筋位置と梁端 でひび割れが生じ,その後,変形角が進展とともに SEA 配筋位置でのひび割れのみが拡幅した²⁾。解析において も,変形角の進行に連れ同断面位置のひずみの進展が顕 著であるため,両者の破壊状況は概ね一致していると考 えられる。しかしながら,解析の解像度などを再検討し た上で,ひび割れ状況についての詳細(本数,位置,角 度など)をより的確に評価することが必要である。

試験体	ひび割れ時せ ん断力		降伏時せん断 力		最大せん断 力	
P 00011	実験	解析	実験	解析	実験	解析
	kN	kN	kN	kN	kN	kN
SEA(0D)	4.6	5.8	7.7	9.3	10.1	9.7
SEA(1.0D)	5.7	8.6	10.8	12.9	14.3	13.8

表-3 各主要点での強度結果一覧

5. せん断補強筋比の影響

前章で示した通り, SEA 配筋断面にヒンジリロケーションされた SEA(1.0D)は、ヒンジ形成断面から梁端側に 置ける斜めひび割れがひび割れ発生後の剛性劣化など

SEA (1.0D) 図-8 2%時の実験におけるひび割れ状況及び 解析での引張主ひずみのコンター図

図-9 力学モデル

部材全体の性能低下に繋がっていると考える。そこで本 章では、当領域でのせん断補強筋量を変数としたパラメ トリック解析から、効果的な配筋について比較検討する。 5.1 解析概要及びパラメータ

表-4 に本研究で用いたパラメータを示す。解析対象 は SEA(1.0D)とし、パラメータは、当試験体の SEA 配筋 断面の中央から梁端までの領域内のせん断補強筋量とし、 実験におけるせん断補強筋比を 1~5 倍 (pw0.52~2.56)及 び後述の集中配筋の計 6 パターンとした。なお、表中の pw の値は対象領域の総配筋量を配筋区間及び梁幅で除 したものである。ここで、図-9 に集中配筋の概念を示 す。実験において最大であった斜めひび割れが 45 度に入 ると仮定した上で図に示すような力学モデルを想定し、 SEA の降伏応力と同等の応力 ($T_{SEA} = T_s$)となるせん断 補強筋量を図中の箇所に集中して配筋した試験体を計画 した。試験体 pw0.52 及び pw1.04、集中配筋モデルを例 に図-10 に配筋図を示す。本章での解析モデル及び材料 構成則については、せん断補強筋量以外、3 章で前述し たものと同様である。

5.2 解析結果

(1) 当該領域でのせん断変形の比較

図-11にせん断ひずみ-部材角関係を示す。また、図 -12 及び図-13 にせん断変形測定領域及びせん断ひず みの導出過程を示す。せん断ひずみは、図-12で示され る領域において、図-13に示すような理想的なせん断変 形を仮定し、当該節点の変形量から得られるr₁とr₂を足 し合わせることによって算出した。結果より、ひび割れ 発生時の R=0.125%程度までは、せん断変形の進展が同 等であるが、ひび割れ発生後の推移では、せん断補強筋 比を増加させることによりせん断変形が減少しているこ とがわかる。本解析内では、pw0.52 から pw1.04 と倍増 させるとせん断変形が半分以上に減少している。せん断 補強筋比をそれ以上(pw1.6 以上)とすると、せん断ひ ずみの抑制効果も減少し,pw2.24以上で概ね同等の効果 であった。また,集中配筋したモデルをみると,pw0.52 試験体と比べて、当該領域内のせん断補強量としては減 っているものの、せん断変形は低減していることがわか る。これは集中配筋のせん断補強筋が応力を効果的に負 担しているためと考えられる。

(2) 部材耐力及び剛性低下率の比較

図-14に部材角 R=1.0%までのせん断力-部材角関 係を示し、図-15には、横軸をせん断補強筋比、縦軸を初 期剛性(ひび割れ発生点までの割線剛性)に対する降伏 点までの割線剛性の比である剛性低下率αを pw0.52 試験 体のときのもので除したものを示す。表-5には各試験 体での剛性及び剛性低下率の比較,表-6には各試験体 の最大耐力の比較を示す。まず剛性をみると、せん断補

	表-4	パラン	ィータ
--	-----	-----	-----

図-13 せん断ひずみ導出過程 (変形前:細破線,変形後:太実線)

	ひび割れ時		降伏時			刚冲低大卖	pw0.52 に対	
pw	せん断力	部材角	剛性	せん断力	部材角	剛性	则注心下卒	する比
%	kN	%	N/mm	kN	%	N/mm	-	-
0.52	8.59	0.079	15481	12.95	0.408	4530	0.293	1.00
1.04	8.60	0.079	15505	14.27	0.420	4858	0.313	1.07
1.60	8.61	0.079	15524	14.53	0.419	4950	0.319	1.09
2.24	8.61	0.079	15534	14.70	0.418	5011	0.326	1.10
2.56	8.33	0.079	15020	14.76	0.419	5033	0.335	1.15
集中配筋(0.40)	8.58	0.079	15474	13.27	0.421	4506	0.291	0.99

表-5 各試験体の剛性低下率

強筋比を増加させることで剛性劣化が改善されている ことがわかる。また集中配筋モデルは pw0.52 より少な い配筋量で良い結果を示し、モデルの妥当性を示した。 今回の解析の範囲では最大で15%ほど剛性劣化が改善 することができた。しかし剛性の上昇はまだ頭打ちに はなっておらずさらにせん断補強筋比を増加させるこ とで改善すると考えられる。次に耐力の方をみると、 やはりせん断補強筋を多く配筋するとひび割れ後の剛 性増大とともに耐力も上昇する結果が見られた。耐力 上昇効果は、 pw1.6 程度で頭打ちとなるが、最大で 16%程度上昇効果が確認できた。次に集中配筋モデル は、剛性低下率は pw0.52 試験体と比べ、ほとんど変化 はなかったが耐力は約6%の上昇がみられた。前節の 結果との関係を見ると、せん断ひずみを大幅(本解析 結果では半分程度)に抑制することが部材剛性の改善 に寄与すると考えられる。

(3) せん断補強筋ひずみ度の推移

図-16 に, pw0.52, pw1.04 及び集中配筋試験体のせ ん断補強筋のひずみ度の推移を示す。本解析モデルで は、あばら筋1本が複数のソリッド要素内にわたって 配置されているため, 図中のひずみ度には、それら各 要素内のあばら筋のひずみ度の平均値を用いた。また, 図中の凡例は, 梁端からせん断補強筋までの距離であ り、各曲線は、それぞれのあばら筋のひずみ度推移を 表している。まず pw0.52 試験体をみると, 梁端から 100mm の位置のせん断補強筋のひずみが最も進展し ており他の2か所のせん断補強筋はほとんど応力を負 担していないことがわかる。Pw1.04 試験体は、梁端か ら 125mm の位置のひずみ度が最も大きく、次いで 100mm 位置でのひずみ度がその 1/3 程度であり、それ より梁端側のあばら筋はほとんど応力を負担していな い。よって、両試験体も当該領域内では梁端から最も 遠いあばら筋にひずみ度が集中し, その大きさは降伏 ひずみ度(0.2%程度)以上であった。これは図-9の。 力学モデルで想定した力の流れが生じているためと考

えられる。集中配筋モデルのひずみ度は、計画どおり 降伏ひずみ(0.2%程度)近くまで到達しているためあ ばら筋が力学モデルで想定した応力(*TsEA*)相当を負 担していることが確認された。しかしながら、前節で 記した通り、集中配筋モデルによる、部材全体の性能 改善への寄与はあまり大きくない。SEAを用いた自己 復元型 RC 梁の剛性劣化の改善などといった性能向上 にむけて、より効果的なあばら筋の配筋案を検討する 必要がある。

図-14 せん断力-部材角関係(0≤R≤1.0)

図-15 剛性低下率

表一6 最大耐力比

pw	最大耐力	pw0.52 に対する比
%	kN	-
0.52	13.8	1.00
1.04	15.4	1.11
1.60	15.9	1.15
2.24	16.0	1.16
2.56	16.1	1.16
集中配筋(0.40)	14.6	1.06

図-16 各せん断補強筋ひずみ

6.まとめ

本研究では、SEA を主筋の一部に代替した RC 梁の FEM 解析を行い、せん断補強筋の影響について検討した。以下に得られた知見を述べる。

- (1) せん断補強筋比を大きくすることで、大幅にせん 断変形を低減することができた。しかし、せん断 補強筋比が 1.6 を超えるとせん断ひずみの減少率 は少なくなった。また、集中配筋モデルは、pw0.52 試験体に対し当該領域のせん断補強量を減じては いるものの、せん断ひずみの低減に有効であった。
- (2) 剛性低下率αはせん断補強筋比を大きくすること で改善され,pw0.52 試験体と比べ最大で15%程度 上昇した。しかし,集中配筋モデルはpw0.52 試験 体と比べてもあまり変化はなかった。部材全体の 性能を改善するには、せん断ひずみの大幅な低減 が必要と考えられる。

(3) せん断補強筋のひずみ度推移より,均等配筋試験 体では梁端から100mm以降の位置でのひずみ度進 展が顕著であった。また集中配筋モデルは,SEA の降伏応力相当の応力負担がされていた。したが って,本モデルにおいては,想定の力学モデルが 概ね妥当であることを示唆した。一方で,実験の ひび割れ状況の詳細をより的確に評価し得るモデ ル構築が必要であるため,その上で再度検討が必 要である。

謝辞

本研究は,科学研究費助成金・若手研究(B)(課題 番号:16K18182)による助成の下で実施した。ここに 記し,謝意を表する。

参考文献

- Nathan Brent Chancellor, Matthew R. Eartherton, David A. Roke, and Tugce Akbas: Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow, Buildings, Vol.4, pp.520-548, 2014
- 2) 鈴木 裕介, 上野 拓, Sanjay PAREEK, 荒木慶

 -:超弾性合金の配筋位置によってヒンジリロケ
 ーションした RC 梁の構造性能評価に関する基礎
 実験,コンクリート工学会年次論文集, Vol39, No.2, pp.1351-1356, 2017
- 海本 純也,鈴木 裕介,谷口 与史也:主筋の 一部の SEA を置換した RC 梁の曲げ性状に関する FEM 解析,大会学術講演梗概集, pp.189-190, 2018
- Pareek S. and Suzuki Y. and Araki Y. and Youssef M.A. and Meshaly M.: Plastic hinge relocation in reinforced concrete beams using Cu-Al-Mn SMA bars, Engineering Structures, Vol.175, pp.765-775, 2018
- TNO DIANA BV.: DIANA Finite Element Analysis User's Manual Release 10.2, 2017
- 6) 大岡 督尚,橘高 義典,渡部 憲:コンクリートの破壊パラメータに及ぼす短繊維混入及び材齢の影響,日本建築学会構造系論文集,第529号, pp.1-6,2006
- FEENSTRA, P. H. : Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete. PhD thesis, Delft University of Technology, 1993.
- Nakamura H. and Higai T. : Compressive Fracture Energy and Fracture Zone Length of Concrete, Modeling of Inelastic Behavior of RC Structures under Seismic Loads, ASCE, pp.471-487, 1999