論文 水平つなぎ筋を有する RC 造プレキャストコア壁におけるせん断スパ ン比の影響

仲地 唯治*1・レー フィ ホアン*2

要旨:建設時の工期短縮,省力化のためにプレキャスト化が有効な方法である。そこで,RC造コア壁を柱形 に分割し,柱部材間の接合面にコッターを設け,接合筋を配筋せず,水平つなぎ筋で一体化することによっ てフルプレキャスト化した場合について,高圧縮力が作用する圧縮端部近傍を模擬した壁柱による水平加力 実験を行った。実験の結果,水平つなぎ筋量,コッター数が異なる場合の,せん断スパン比が壁柱の構造性 能に与える影響が明らかとなった。

キーワード:鉄筋コンクリート,コア壁,プレキャスト,水平つなぎ筋,コッター,拘束,せん断スパン比

1. はじめに

近年,建設業における労働力不足が深刻化しており, 超高層建物の建設において,建設時の工期短縮,省力化 のためにプレキャスト化が有効であると考えられる。超 高層建物の連層耐震壁をプレキャスト化した例に関して は,向出ら¹⁾が断面両端部をプレキャスト化した壁柱に ついて曲げせん断実験を実施し,構造性能を検討してい る。毛利ら²⁾は,隅角部及び先端部をプレキャスト化し たコ型 PCaPC 造コア壁について静的交番載荷実験を実 施している。また,中澤ら³⁾は両側端部にプレキャスト 柱型を有する RC コアウォールについて性能確認実験を 実施している。

一方,著者らは RC 造コア壁を全長さフルプレキャス ト化した場合の構造性能を検討するため,コア壁の圧縮 端部近傍を模擬したプレキャスト壁柱による水平加力実 験を行った⁴⁾。壁柱のプレキャスト化は,壁柱を柱形に 分割し,柱部材間の接合面にコッターを設けグラウトを 充填する方法とした。柱部材間の接合には建設時の施工 性を考慮し,鉛直接合部に分散して配筋する接合筋では なく,床レベル等に集中配筋する水平つなぎ筋を用いた。

本研究では、これに対し、せん断スパン比が異なる場 合の水平加力実験を実施し、水平つなぎ筋量、コッター 数が異なる場合の、せん断スパン比が構造性能に与える 影響について検討した。

2. 実験概要

2.1 試験体

図-1 に試験体の形状,配筋を示す。また,表-1,表 -2 にコンクリート及び鉄筋の材料試験結果を示す。試 験体は25 階程度の超高層建物を想定した実大の約1/8の モデルで,コア壁の圧縮端部近傍壁板を模擬した長方形 断面の壁柱試験体 PC2, PC3, PC4⁴⁾(せん断スパン比2.4) 及び PCS2, PCS3, PCS4(同1.4)の計6体である。 壁柱断面b×D=90mm×405mm, コンクリート調合強度 60N/mm²,最大骨材寸法5mm,軸力比 $\sigma_0/\sigma_B=0.2(\sigma_0=N/A,$ N:軸力,A:断面積, σ_B :コンクリート圧縮強度)とした。

いずれの試験体も,正方形断面のプレキャスト柱を4 本並べ,柱間は7mmとし,深さ6mmで平滑な面のコッタ ーを設け,調合強度80N/mm²のグラウトを充填した。2 階(PC2, PC3, PC4においては3階も)の床部分はコンクリ ート後打ちとし,水平つなぎ筋を配筋した。また,1階柱 を1階中央高さ付近で2分割し,分割した上下柱間の部分 を,2階の床部分と同様にコンクリート後打ちとし,水平 つなぎ筋を配筋した。水平つなぎ筋は後配筋で,両端主 筋に水平つなぎ筋の両端フックを掛けるのが困難である ため,両端180°フックとし,2本一組で向い合せにして(フ ック部重ね長さ87mm)試験体側面より主筋内側に差し込 んだ。主筋は通し配筋,グラウトは流し込みで,グラウ ト充填性向上のため,試験体作製は横打ちとした。

主筋はD10(SD345)を用い,帯筋には高強度鉄筋U5.1 (1300 N/mm²級)を用い,ピッチを55mmとした。水平つな ぎ筋は,PC3,PCS3ではD6(SD345)を,その他の試験体 ではD10(SD345)を用いた。いずれの試験体もかぶり厚さ は6mmである。

PC3は水平つなぎ筋をD6として, PC2のD10に対し, 水 平つなぎ筋量を0.45倍に減じ, 水平つなぎ筋量の影響を 検討した。

PC4はPC2に対し、コッター数を減じ、コッター数の影響を検討した。プレキャスト柱間、すなわち一鉛直接合部あたりのコッター数は、PC2、PC3では、1階下半分、1階上半分、2階部分でそれぞれ3個、3個、4個の計10個である。これに対しPC4ではそれぞれ1個で計3個とし、PC2に対し0.3倍の個数とした。

PCS2, PCS3, PCS4はそれぞれPC2, PC3, PC4に対し 2階部分を省き, せん断スパン比を2.4から1.4に減じ, せん断スパン比の影響を検討した。

^{*1} 福井工業大学 工学部建築土木工学科教授 博士 (工学) (正会員) *2 TSUCHIYA 株式会社

2.2 実験方法

図-2 に加力装置を示す。加力は一定軸力下における 正負交番繰り返し加力とした。試験体の下端を加力フレ ームに固定し、キャンチレバー型で水平力を作用させた。 図中,試験体左側より水平ジャッキで押す場合を負加力 とした。正加力は,試験体右側に設置したピン支承及び PC 鋼棒を介して、水平ジャッキで引くことにより載荷し た。すなわち,試験体にとっては右側を押すこととなる。 ただし,試験体を PC 鋼棒で締め付けることがないよう にして載荷した。

軸力は試験体上方の油圧ジャッキにより載荷し,軸力 比 0.2 の定軸力 (PC2~PC4, PCS2~PCS4 でそれぞれ 441kN,474kN,457kN,444kN,498kN,499kN) とした。試験 体上面には,各柱部材の上部の位置にピン支承を設け, 鋼板を介して油圧ジャッキにより軸力を加えた。加力は 2 階床レベル高さ(PC2~PC4:615mm, PCS2~PCS4: 565mm)での変位制御とし,部材角 1/1000(rad.)(1回),2, 5,7.5,10,15,20/1000 (各 2 回),30/1000 (1 回)に おける正負交番繰り返し加力とした。変位計で各区間の 伸縮量,プレキャスト試験体における柱部材間の目開き 及びずれを,また,箔ゲージで帯筋,水平つなぎ筋,及 び主筋のひずみを計測した。

3. 実験結果

3.1 破壊状況

図-3 にひび割れ状況を示す。PC2~PC4, PCS2 のい ずれも 2/1000 までに,また,PCS3,PCS4 では 1/1000 ま でにそれぞれ曲げひび割れが試験体下部に発生した。 PC2~PC4 では 5/1000 までに,PCS2~PCS4 では 2/1000 までにコッター部にせん断ひび割れが発生し,進展した。 圧縮側脚部においては,PC2~PC4,PCS3 では 5/1000 ま でに,PCS4 では 7.5/1000 までに,PCS2 では 10/1000 ま でにコンクリートの圧壊(縦ひび割れ)が発生した。

7.5/1000 以降, PC2 以外ではコッター部のせん断破壊,

試験体		圧縮強度	ヤング係数	割裂強度	
		(N/mm²)	$(\times 10^4 N/mm^2)$	(N/mm²)	
PC2	プレキャスト部	60.6	2.63	2.75	
	後打ち部	58.7	2.65	2.13	
	グラウト	91.7	3.24	4.85	
PC3	プレキャスト部	65.1	2.97	2.92	
	後打ち部	59.1	2.77	3.00	
	グラウト	92.1	2.89	6.59	
PC4	プレキャスト部	62.7	2.96	2.47	
	後打ち部	68.1	2.94	2.38	
	グラウト	100.1	3.29	5.71	
PCS2	プレキャスト部	60.9	2.98	2.67	
	後打ち部	56.5	2.67	2.27	
	グラウト	96.7	3.51	5.64	
PCS3	プレキャスト部	68.3	3.33	3.33	
	後打ち部	73.8	3.41	3.89	
	グラウト	101.3	3.55	5.76	
PCS4	プレキャスト部	68.4	3.21	2.90	
	後打ち部	61.1	2.94	2.98	
	グラウト	102.5	3.80	5.00	

表-1 コンクリートの材料試験結果

表-2 鉄筋の材料試験結果

	降伏強度	降伏強度 引張強度 ヤング係数		伸び	
呼び名	(N/mm^2)	(N/mm^2)	$(\times 10^5 \text{N/mm}^2)$	(%)	
D10	397	577	1.85	18.5	
U5.1	1368	1491	2.11	9.3	
D6	409	553	1.83	20.1	

PC2, PC3, PC4

引張降伏はみられなかった。なお、いずれの試験体も、 最終の部材角に至るまで軸力を保持していた。

3.2 荷重-変形関係

図-4に荷重-変形関係を示す。また,表-3に最大荷 重を示す。PC2の最大荷重は正加力において20/1000で, 負加力において15/1000で生じた。正負とも,最終の 30/1000のサイクルの30/1000に近いあたりでやや低下し た。PCS2の最大荷重は正負とも15/1000で生じた。正負 とも20/1000から低下し始めた。

PC3 の最大荷重は正負とも 10/1000 で生じ, 15/1000 か ら低下し始め, 20/1000 で大きく低下した。20/1000 では 最大耐力の 80%以下の荷重となり,加力を終了した。 PCS3 の最大荷重は正加力において 15/1000 で, 負加力に おいて 7.5/1000 で生じた。正加力時は 20/1000 から, 負 加力時は 15/1000 から低下し始めた。

PC4の最大荷重は正負とも7.5/1000で生じ、10/1000から低下し始めた。20/1000では最大耐力の80%以下の荷重

PC2

PC4

PC3

図-3 ひび割れ状況(最終状況)

すなわち, コッター部せん断ひび割れの進展, ひび割れ 幅の拡大, さらには, コッターのグラウトおよび周辺コ ンクリートの剥落が生じた。また, PC4 以外では, 脚部 のコンクリート圧壊(かぶりコンクリートの剥落)が生 じている。

主筋の降伏については, PC3, PCS4 では 5/1000 まで に, PC2, PCS2, PCS3 では 7.5/1000 までに, PC4 では 15/1000 までに正加力時に最外縁圧縮主筋が圧縮降伏(降 伏ひずみ 2146µ) した。引張側に関しては, PC2, PC3 で は 15/1000 までに, PC4 では 20/1000, PCS2 では 30/1000 までに最外縁引張主筋が引張降伏し, PCS3, PCS4 では

図-5 水平つなぎ筋のひずみ分布

となり,加力を終了した。PCS4の最大荷重は正加力において15/1000で,負加力において7.5/1000で生じた。正負とも20/1000から顕著に低下し始めた。

3.3 水平つなぎ筋のひずみ分布

図-5に試験体PC2~PC4, PCS2~PCS4の正加力時に おける水平つなぎ筋ひずみ分布を示す。PC3は2階床高さ, その他は1階中央高さでのひずみ分布で,いずれもひずみ 分布中の最大ひずみが各試験体中で最も大きい高さでの 分布である。鉄筋は,水平つなぎ筋量の少ないPC3, PCS3 ではD6(SD345,降伏ひずみ4229µ, 0.2%オフセット)で, その他の試験体はD10(SD345,降伏ひずみ2146µ)である。 PC2 では, 30/1000 に達すると圧縮端部より 93mm の 点でひずみが降伏ひずみ(2146µ)を超え,急激に増大して いる。PC2 では 30/1000 のサイクルの最終付近において 耐力がやや低下しており,降伏によるものと考えられる。 PCS2 では 15/1000 で圧縮端部から 149.5mm の点で降伏 ひずみを超えている。最終ひび割れ状況では,1 階中央 高さレベルの後打ちコンクリート部においてコンクリー ト破壊部が水平つなぎ筋のひずみが大きい位置と一致し ている。各部材角でのひずみはせん断スパン比 2.4 の PC2 よりも大きく,鉛直接合部破壊に対応している。

PC3 では、10/1000 で圧縮端部より 307.5mm の測定点 でひずみが降伏ひずみ(4229µ)を超え、急激に増大してい る。荷重-変形関係では、15/1000、20/1000 のサイクル

図-6 ずれの水平方向分布

で耐力が大きく低下しており,水平つなぎ筋の降伏に対応していると考えられる。PCS3では,15/1000において202.5mmの点で降伏している。20/1000以降さらに増大し,荷重低下に対応していると考えられる。PC3,PCS3とも降伏が顕著で,水平つなぎ筋量が少ないためであると考えられる。せん断スパン比2.4のPC3の方がより早い段階で降伏し,早い段階での耐力低下に対応している。

PC4 では、最終の 20/1000 に至るまで降伏ひずみ (2146µ) に達していない。コッター数が少ない PC4 で は、コッター部の破壊に伴いプレキャスト柱の一体性が 弱まり、10/1000 より耐力が低下し始めた。そのため、 水平つなぎ筋の付着作用低下に伴う柱の一体化効果の低 下により、降伏にも至らなかったと考えられる。コッタ 一数が少ないせん断スパン比 1.4 の PCS4 も、PC4 と同 様、最終の 20/1000 に至るまで降伏していないが、各部 材角での最大値はせん断スパン比 2.4 の PC4 の方が大き く、PC4 の、より早い段階での耐力低下に対応している。

3.4 鉛直接合部におけるずれの挙動

図-6 に,正加力時のプレキャスト柱部材間の鉛直接 合部におけるずれの水平方向分布を示す。ずれの測定位 置は1段目(高さ170mm),2段目(高さ415mm),3段 目(高さ805mm)で,柱部材間の鉛直方向相対変位を変 位計で測定した。正加力時に鉛直接合部の圧縮端部側が, 引張端部側よりも相対的に上方にずれる場合を正とした。 PC2, PCS2, PCS3は1段目,PC3,PCS4は2段目,PC4 は3段目の分布を示し,いずれも各分布中の最大値が各 試験体中で最も大きい段での分布である。

PC2の最大値は6体のなかで最も小さく、1.9mmである。

6体中唯一,鉛直接合部せん断破壊が顕著でなかったこと と対応し,ほぼ最終まで一体性が保たれたと考えられる。 せん断スパン比2.4のPC2に対し1.4のPCS2では最大値が 大きく3.7mmである。

水平つなぎ筋量の少ない PC3, PCS3 の最大値はそれ ぞれ 2.6mm, 3.7mm, コッター数の少ない PC4, PCS4 の 最大値はいずれも 3.3mm である。PC3 と PCS3 の各部材 角におけるずれの値はほぼ同程度で, せん断スパン比 2.4 の PC3 の最大値の方が小さいのは, 最大荷重以降の耐力 低下が大きく, 20/1000 で載荷を終了したためである。 せん断スパン比 2.4 の PC4 は 1.4 の PCS4 に比べて, 各 部材角でのずれは大きく, PC4 の, より早い段階での耐 力低下に対応している。

4. 最大耐力

表-3に最大耐力を示す。水平耐力の計算は、既往の 壁,壁柱の式が中間の全縦筋引張降伏を仮定し、本実験 結果(降伏ひずみに対する,最大耐力時の両端を除く縦 筋ひずみの平均値の比が PC2, PC3, PC4, PCS2, PCS3, PCS4 でそれぞれ0.24, -0.004, 0.01, 0.21, -0.03, -0.02) と異なる為,表-3 に示す既往の柱の曲げ耐力式を用い た。但し、ここでは両端部縦筋それぞれ5本のみを主筋 とし、主筋すべてが降伏しているものとし、その他の縦 筋は上記の通り、ひずみが降伏ひずみに比較して十分小 さい為、すべて計算から除外している。実験値は計算値 に対し,鉛直接合部の破壊により一体性の弱まった PC3, PC4, PCS3, PCS4 では、それぞれ、11~15%, 16~19%, 8~19%, 19~22%低い。一体性がほぼ保たれた PC2 では

			表-3 最大耐力	נ		(単位:kN)
試験体 -	水平耐力			鉛直接合部耐力		
	実験値(負側)	計算値	実/計(負側)	作用せん断力A	せん断耐力B	B/A
PC2	114.8(111.5)	115.7	0.99(0.96)	374.6	415.7	1.11
PC3	107.8(103.5)	121.2	0.89(0.85)	392.5	342.2	0.87
PC4	99.3(95.3)	118.3	0.84(0.81)	383.1	246.5	0.64
PCS2	191.5(204.0)	199.4	0.96(1.02)	389.3	261.5	0.67
PCS3	173.8(197.3)	214.9	0.81(0.92)	419.6	218.3	0.52
PCS4	167.3(175.3)	215.1	0.78(0.81)	420.0	168.9	0.40

水平耐力計算値P_{NU}:文献⁵⁾(4.7.e)式による

1 に近い値となった。鉛直接合部のせん断破壊が認めら れるものの,上記のように縦筋引張ひずみの大きかった PCS2 もやや 1 に近い値となった。計算値に対する実験 値の比率は,正負の平均で比較すると,せん断スパン比 による差はほとんどみられない。

鉛直接合部耐力についても表-3に示す式を用いた。 ただし、せん断耐力を求める際、水平つなぎ筋量を接合 筋量とみなした。鉛直接合部破壊が顕著なせん断スパン 比1.4のPCS2はせん断耐力が作用せん断力を下回り、顕 著な破壊のなかったせん断スパン比2.4のPC2ではせん断 耐力が上回った。すなわち、せん断スパン比の違いによ り、せん断耐力と作用せん断力の大小関係が逆転し、異 なる破壊形式となったと考えられる。水平つなぎ筋量の 少ない PC3 と PCS3, コッター数の少ない PC4 と PCS4 はいずれもせん断耐力が作用せん断力を下回った。先に 述べた破壊状況では、これらの試験体は鉛直接合部でせ ん断破壊が顕著であったことから、計算結果は破壊形式 に対応していると考えられる。作用せん断力に対するせ ん断耐力の比は, PC3 と PCS3 がそれぞれ 0.87, 0.52, PC4 と PCS4 がそれぞれ 0.64 と 0.40 となり, せん断スパ ン比の大きい方が大きな比率となった。せん断破壊後は いずれも低いせん断力負担となり、PC3、PC4の方が破 壊前後のせん断力負担の差が大きく,荷重-変形関係に おける最大耐力後の荷重低下が大きかったと考えられる。

5. 結論

RC 造コア壁をフルプレキャスト化した場合の構造性 能を検討するため、せん断スパン比の異なる壁柱による 水平加力実験を行い、以下のことが明らかとなった。

 充分な水平つなぎ筋とコッターが配置された場合に、 鉛直接合部に接合筋がなくともプレキャスト柱の一 体性が高まり、所定の耐力、靭性を確保できる。但し、 せん断スパン比によっては、鉛直接合部のせん断破壊 により一体性が低下し,耐力,靭性の低下につながる。

- 2) 接合筋を用いずに水平つなぎ筋によりプレキャスト 柱を一体化できた場合,水平耐力は既往の柱の曲げ耐 力式でほぼ算定できる。
- 3) 水平つなぎ筋量の少ない PC3, PCS3 においては、せん断スパン比の大きいPC3の水平つなぎ筋がより早い 段階で降伏し、早い段階での耐力低下に対応していた。
- 4) コッター数の少ない PC4, PCS4 では、せん断スパン 比の大きいPC4の方が各部材角での鉛直接合部のずれ は大きく、早い段階での耐力低下に対応していた。
- 5) 鉛直接合部耐力に関しては,既往の耐力式による検討 結果が破壊形式に対応していた。

参考文献

- 向出静司,古宮嘉之,山本憲一郎,益尾 潔:鉛直 接合部を介してプレキャスト部と現場打ち部を一 体化した RC 造壁柱の曲げせん断性状,コンクリー ト工学年次論文集, Vol.25, No.2, pp.805-810, 2003.7
- 毛利浩他: コ型 PCaPC 造コア壁に関する実験的研究(その1,その2),日本建築学会大会学術講演梗概集,pp.805-808,2007.8
- 3) 中澤春生,大久保香織,刑部 章, 淵本正樹:プレ キャスト柱型を内蔵する RC コアウォールの耐力及 び変形性能評価に関する実験,コンクリート工学年 次論文集, Vol.31, No.2, pp.463-468, 2009.7
- 4) 仲地唯治:水平つなぎ筋を有する RC 造プレキャス トコア壁の構造性能に関する実験的研究,コンクリ ート工学年次論文報告集, Vol.39, pp.295-300, 2017.7
- 5) 日本建築学会:建築耐震設計における保有耐力と変 形性能,1990
- 6) 日本建築学会:壁式プレキャスト鉄筋コンクリート
 造設計規準・同解説, 1982