論文 接着系あと施エアンカーの非拘束式の引張試験結果の破壊モードに よる検証

森田 洋介*1・早崎 洋一*2・伊藤 嘉則*1・濱崎 仁*3

要旨:接着系あと施工アンカーの引張試験結果1620体についてデータを取り纏めた。破壊モード(アンカー 筋の破断,コーン状破壊,引き抜けを伴うコーン状破壊,付着破壊)で分類し,最大耐力と計算値の関係を 調べた。また,付着破壊と分類したデータ490体に対して付着応力度を検証した。付着応力度は,非拘束式 の条件で実施した引張試験のためアンカー筋の降伏などを伴っている場合もあるが,t分布を仮定した付着応 力度の下限値として5~17N/mm²あることが確認された。 キーワード:接着系アンカー,破壊モード,付着応力度

1. はじめに

接着系あと施工アンカー(以下,「接着系アンカー」と する。)は、コンクリートに建築設備を取付けるため、あ るいは既存コンクリート躯体に耐震補強部材を緊結する ために使用する定着金物と位置付けられている。近年で はさらに、増改築における構造部材同士の接合に使用す るなど構造部材への適用が望まれている。しかし、幾つ かの規準(例:あと施工アンカー・連続繊維補強設計・ 施工指針¹⁾)で、短期許容引張力、短期許容せん断力お よびこれらの材料強度については規定しているが、長期 荷重を負担する部材への適用は認められていない。

このような背景の中,2015 年度~2017 年度にかけた国 土交通省による建築基準整備促進事業で,接着系アンカ ーを構造部材に適用するに当たって,引張,せん断に加 え,クリープを含めた性能値などの検討が進められた。

筆者らは、先の事業において多数のデータから接着系 アンカーの引張強度および付着強度の定性的な傾向を把 握することを目的とし、公的試験機関にて受託試験とし て実施した接着系アンカーの引張試験結果を取り纏め、 破壊モードが付着破壊と判定されたデータをもとに付着 強度を検証した²⁾。また、過去には、接着系あと施工ア ンカーの引張強度に対して、アンカー筋の引き抜け挙動 が及ぼす影響³⁾とばらつき程度⁴⁾についての検証を行っ た。

本論文では、あと施工アンカーの構造性能評価を行う 際の基礎資料にすることを目的に、接着系アンカーの引 張強度に着目し、文献 2)の再整理として破壊モードごと に実験値と計算値の比較を行った。さらには、付着破壊 と分類したデータをもとに、付着応力度の下限値につい ての検証を行った。

2. 試験概要

2.1 試験体

既存鉄筋コンクリート部材を想定したコンクリート母 材は,原則,厚さ300~450mm,幅2000~2500mm,長 さ3000~3500mmのコンクリート版を用いた。その際, 下端50~100mmの位置に格子鉄筋(D10@250)を設け たほかは鉄筋を配していない。

使用した固着剤は、有機系と無機系の2種類とし、主 剤は、有機系がウレタンメタクリル、エポキシアクリレ ート、エポキシ、ビニルウレタン、不飽和ポリエステル 樹脂による5種類、無機系がセメントモルタルによる1 種類である。

固着剤の充填方法は、カプセル方式ではガラス管式お よびフィルムチューブ式(紙チューブ式も含める)の2 種類,注入方式ではカートリッジ型の1種類による合計 3種類がある。さらに、カプセル方式における施工方式 は回転打撃型および打込み型の2種類に分けられる。コ ンクリート母材への穿孔の際にはハンマードリル又はダ イヤモンドコアドリルを使用しており、アンカー筋の打 設はいずれも下向き施工した。その際、へりあき寸法お よびはしあき寸法、並びに、アンカーピッチの影響を受 けない位置に打設し、アンカー単体の固着性能を調べる こととした。

使用したアンカー筋は、異形鉄筋および全ねじボルト の2種類であり、ガラス管式およびフィルムチューブ式 で固着剤を充填する場合に限り、先端を45度にカットし て使用した。先端を45度にカットした試験体の有効埋込 み長さ(*L*_e)は穿孔深さからアンカー筋の呼び名の径(以 下、「アンカー筋の径:*d*_a」とする。)を差し引いた値と した。

- *1 (一財)建材試験センター (正会員)
- *2 (一財) 建材試験センター
- *3 芝浦工業大学 建築学部 建築学科教授 博(工) (正会員)

2.2 試験方法

写真-1に試験方法を示す。試験は、反力用鋼板およ び反力用支柱から構成される反力台を使用し、反力台上 に油圧ジャッキ、ロードセル、球座を設置してアンカー 筋に鉛直上向き方向の引張力を単調加力によって載荷し た。なお、アンカー筋が異形鉄筋の場合は、写真中にあ るように引張ジグに異形鉄筋用チャックを取り付け、他 方、全ねじボルトの場合は、アンカー筋先端にカプラー を取付け、それぞれ PC 鋼棒を介して引張力を加えた。 ここで、反力用鋼板はセンターホール型鋼板であり、孔 径(φ=270mm、330mm、390mm、450mm、510mm)は、 埋め込み長さの 2.0 倍を直径とする有効投影面積より大 きいのでコーン状破壊を拘束しておらず、本試験の位置 づけは非拘束式の引張試験となる。

写真-1 試験方法

2.3 材料試験

材料性状として、コンクリートの圧縮強度はJISA1108 (コンクリートの圧縮強度試験方法)に従って求めた3 体の平均値とし、試験日ごとに圧縮強度試験を実施した。 その際、供試体の養生は現場封かん養生とした。また、 アンカー筋の降伏強度および引張強度はアンカー筋と同 ーロットによる鉄筋又はボルトについてJISZ2241(金 属材料引張試験方法)に従って求めた3体の平均値とし た。

3. データー覧

本試験では、アンカー筋の径、コンクリート圧縮強度 などの力学的因子に関する変動要因に対して同一条件 5 体ずつを実施しており、データ数は 324 種類(1620 体) となった。

図-1 にアンカー筋の径およびコンクリート圧縮強度 に関する試験体数の頻度分布を示す。図より,アンカー 筋の径は、異形鉄筋では D19 が、全ねじボルトでは M12 および M16 が多く使用されている。コンクリート設計基 準強度は Fc24 に設定されているものが多い中で、試験時 のコンクリート圧縮強度(実強度)は $\sigma_B=25\sim30[\text{N/mm}^2]$ の範囲が中心である。

固着剤の種類は,エポキシ29種類(1種類15体)が 最も多く,ついでエポキシアクリレート41種類,ウレタ ンメタクリル19種類の順となり,そのほかの3つの固着 剤は7種類以下となる。

固着剤の充填方法は,注入方式 57 種類が最も多く,ついでガラス管式 43 種類,フィルムチューブ式(紙チューブも含める)8種類の順となる。

アンカー筋の材質は,異形鉄筋では,SD345 が 144 本 で,SD295A が 99 本である。全ねじボルトでは,SNB7 が最も多く 39 本であり,ついで SS400 が 27 本,S45C が 9 本,強度区分 8.8 が 6 本の順となる。それぞれの降 伏強度および引張強度の平均値を**表-1** に示す。

図-1 アンカー筋の径およびコンクリート圧縮強度に 関する試験体数

表-1 アンカー筋の降伏強度および引張強度

アンカー筋の材質	降伏強度 [MPa]	引張強度 [MPa]	
SD345	389	573	
SD295A	361	520	
SNB7		991	
SS400		603	
S45C		621	
強度区分 8.8		909	

4. 実験結果

4.1 破壊モードの分類

試験体 1620 体に対して,以下に示す4つの破壊モード に分類した。

- a) コンクリートのコーン状破壊:310本
- b)アンカー筋の抜けを伴うコーン状破壊:265本
- c) アンカー筋の付着破壊:490本
- d) アンカー筋の破断:555本

破壊モードの分類は,目視観察に加え,引張荷重-引 き抜け変位曲線の様相を含めて判断した。

破壊状況の例を写真-2 に、引張荷重-引き抜け変位 曲線の代表例を図-2 に示す。写真-2a)のコーン状破壊 と写真-2b)の引き抜けを伴うコーン状破壊では、最大耐 力後の引張軟化挙動が異なっていた。コーン状破壊は最 大耐力に到達した後に脆性破壊し、残存耐力が概ね0と なる場合が多く、かつ、最大耐力時の変位も引き抜けを 伴うコーン状破壊に比べて小さい傾向にあった。他方、 引き抜けを伴うコーン状破壊の場合は、最大耐力後も緩 やかなカーブを描きながら耐力低下する特徴があった。 ただし、コーン状破壊に比べて最大耐力は小さい。写真 -2c)の付着破壊の中には表層コンクリートの割れを伴 っているものがあり、引張荷重-引き抜け変位曲線につ いては、引き抜けを伴うコーン状破壊と類似していた。 付着破壊面は、固着剤とコンクリート孔壁の境界面であ り、固着剤とアンカー筋の境界面ではなかった。

最大耐力時のばらつきに着目すると、4 つの破壊モードのうちアンカー筋の破断は、鋼材自身の引張強度で最大耐力が決まるためデータのばらつきは小さい。しかし、コーン状破壊および付着破壊はコンクリート圧縮強度や引き抜け量の影響を受けるのでばらつきが大きい。そこで、以下では破壊モードd)を除くa)~c)に着目する。

4.2 最大耐力と計算値の関係

破壊モードに対応した計算値を文献 5)の算定式を参照 してコーン状破壊の計算値 P_c については式(1),引き抜け を伴うコーン状破壊の計算値 P_n については式(2),付着 破壊に対する計算値 P_f は式(3)を用いて,算定し試験値最 大耐力との関係を調べた。ただし,式(2)は文献 3)で提案 した算定式であり,図-3 に示すように有効埋め込み長 さ L_e から付着破壊長さ L_b を差し引いた長さ L_c (= L_e - L_b) で求めるコーン状破壊耐力と付着破壊長さ L_b から求め る付着耐力の累加で評価する式であり,付着破壊長さ L_b には松崎らの提案⁶による L_b =0.73 L_e -30 を用いている。

$$P_c = 0.23\sqrt{\sigma_B} \cdot \pi \cdot L_e \cdot (L_e + d_a) \tag{1}$$

$$P_n = 0.23\sqrt{\sigma_B} \cdot \pi \cdot (L_e - L_b) \cdot [(L_e - L_b) + d_a]$$

$$+10\sqrt{\sigma_B/21\cdot\pi\cdot d_a\cdot L_b}\tag{2}$$

$$P_f = 10\sqrt{\sigma_B / 21} \cdot \pi \cdot d_a \cdot L_e \tag{3}$$

a)コーン状破壊

c) 付着破壊

b)引き抜けを伴うコーン状破壊

写真-2 破壊状況の例

図-3 付着破壊長さの定義

 σ_B : コンクリート圧縮強度[N/mm²]

L_e:有効埋め込み長さ[mm]

 $L_b: 付着破壊長さ(=0.73L_e - 30)$ [mm]

d_a:アンカー筋の径[mm]

なお,文献 3)によると,最大耐力は,コンクリート圧 縮強度の平方根とその有効水平投影面積の積および埋め 込み長さとアンカー筋に径から求まる付着面積に比例し て大きくなることが明らかになっている。したがって, 本論文では、3 章で示した力学的因子(アンカー筋の径, コンクリート圧縮強度,固着剤の種類,固着剤の充填方 法,アンカー筋の材質)を区別せず各々の計算を行った。 また,式(3)の d_aは,実際の付着破壊面を勘案すると穿孔 径 D_aを用いるべきだが,一般の設計ではアンカー筋の径 を用いることが多いと考えられるため,ここでの計算で はアンカー筋の径を与えた。実験検証として,穿孔径に よる厳密な付着応力度は5章で示す。

図-4に、最大耐力 P_{max} と計算値の関係を示す。図中 には、最大耐力と計算値の比に対する基本的統計値(平 均値、範囲、標準偏差)も示した。コーン状破壊のエポ キシなど一部計算値が高いものも確認されたが、全体的 な傾向として最大耐力は計算値より高い値にあった。最 大耐力と計算値の比はコーン状破壊および引き抜けを伴 うコーン状破壊の方が付着破壊より高い値にあるが、基 本的統計値で判断されるばらつきは付着破壊の方が小さ い傾向にあった。最大耐力と計算値の比を値の大きい順 に並べると、引き抜けを伴うコーン状破壊>コーン状破 壊>付着破壊となり、最大耐力と計算値の比のばらつき を値の小さい順に並べると、付着破壊<引き抜けを伴う コーン状破壊<コーン状破壊となった。また,コーン状 破壊と引き抜けを伴うコーン状破壊を比較すると,コー ン状破壊より引き抜けを伴うコーン状破壊の方が,計算 値を下回るデータが少なく,ばらつきも小さいことから 式(2)の有用性が示唆された。なお,固着剤の違いによる ばらつきは,付着破壊でのセメントモルタルが比較的ば らつきが小さいほかは,明確な傾向がみられなかった。 これを踏まえて,最大耐力と計算値の比によるばらつき の要因として,アンカー筋の径とコンクリート圧縮強度 に着目した。

破壊モードごとの最大耐力と計算値の比とアンカー筋の径およびコンクリート圧縮強度を表-2に、破壊モードごとの最大耐力と計算値の比とアンカー筋の径およびコンクリート圧縮強度の関係を図-5~図-7に示す。なお、ここでは、D10、D13、D16およびM10、M12、M16を細径、D19、D22、D25およびM20、M22、M24を太径として分類した。コーン状破壊では、アンカー筋の径が太くなるにつれ、最大耐力と計算値の比が小さくなる傾向がみられ、その値は、細径では1.76、太径では1.38であった。引き抜けを伴うコーン状破壊および付着破壊

図-4 破壊モードごとの最大耐力と計算値の関係

表-2 破壊モードごとの最大耐力と計算値の比

破壊モード	アンカー筋の径 d_a		コンクリート圧縮強度 $\sigma_B[N/mm^2]$		
	細径	太径	$\sigma_{\!B} \! < \! 20$	$20 \leq \sigma_B \leq 30$	$30 \le \sigma_B$
コーン状破壊	1.76	1.38	1.47	1.57	1.34
引き抜けを伴う コーン状破壊	1.90	1.82	1.99	1.83	1.85
付着破壊	1.19	1.28	1.34	1.26	1.14

(注) 細径は D10, D13, D16, M10, M12, M16 を, 太径は D19, D22, D25, M20, M22, M24 を示す。

では,最大耐力と計算値の比がアンカー筋の径およびコ ンクリート圧縮強度によって増減するという明確な傾向 はみられなかった。

- (注) 細径は D10, D13, D16, M10, M12, M16 を, 太径 は D19, D22, D25, M20, M22, M24 を示す。(図-5~図-7で共通)
- 図-5 コーン状破壊の最大耐力と計算値の比とアンカ 一筋の径およびコンクリート圧縮強度の関係

図-6 引き抜けを伴うコーン状破壊の最大耐力と計算 値の比とアンカー筋の径およびコンクリート圧 縮強度の関係

5. 付着応力度の下限値の検討

4章の検証により付着破壊と分類した98種類490体の 最大耐力は、コーン状破壊などと比べて計算値との比に よるばらつきが小さいことが明らかとなった。その前提 条件の中、490体のデータに対して付着応力度を最大耐 力から式(4)により算出した。なお、ここで取り扱う最大 耐力は、付着破壊を強制させる拘束式の引張試験と異な り、非拘束式の引張試験から得られた値であるため、ア ンカー筋の降伏や表層コンクリートの割れを伴った付着 破壊の最大耐力も含まれているが、ここでは分類せず式 (4)を用いて付着応力度を算出した。また、本試験の付着 破壊面は全て固着剤とコンクリート孔壁の境界面であっ たので、厳密な付着応力度の算出として、コンクリート の穿孔径 D_aを用いた。

τ =	P_{max}	(4)
	$\pi \cdot D_a \cdot L_e$	(1)

Pmax:最大耐力[N]

 $D_a: コンクリートの穿孔径[mm]$

L_e: 有効埋め込み長さ[mm]

式(4)で得られた付着応力度に対して,同一条件5体の 下限値の算出を行った。算出方法は,正規分布の95%信 頼区間の下限値 $_n\tau_{min}$ については式(5),t分布の95%信頼 区間の下限値 $_t\tau_{min}$ については式(6)を用いた。また,参 考値として同一条件5体のうちの最小値として式(7)を算 出した。

$$\tau_{min} = \bar{\tau} - 1.96\sigma \tag{5}$$

$$_{t}\tau_{min} = \bar{\tau} - 2.132\sigma \tag{6}$$

 $min \tau_{min} = min[\tau_1, \tau_2, \tau_3, \tau_4, \tau_5]$ (7)

 $\sigma:標準偏差$

n

ī:同一条件5体の付着応力度の平均値

τ1~τ5:同一条件5体の各々の付着応力度

 $n^{\tau}min$, $t^{\tau}min$, $min^{\tau}min$ とコンクリートの穿孔径の関 係を図-8に, $n^{\tau}min$, $t^{\tau}min$, $min^{\tau}min$ とコンクリート圧 縮強度の関係を図-9に示す。両者とも相関係数は低い 値で,付着応力度とコンクリートの穿孔径および付着応 力度とコンクリート圧縮強度に相関はみられなかった。 一方,同一条件5体に対して,min[$n^{\tau}min$, $t^{\tau}min$, $min^{\tau}min$] (以下,「最小下限値」とする。)を調べたところ,t分 布による $t^{\tau}min$ が最も小さい値になった。値の小さい順 に並べると $t^{\tau}min < n^{\tau}min < min^{\tau}min$ となる。したがって, 試験結果をもとに付着応力度の性能判定を行う際には, N数が5体の場合,t分布の95%信頼区間の下限値 $t^{\tau}min$ で評価を行うことで最も安全側の結果が得られることが 示唆された。その際,多数のデータを分析した本論文の 知見として $t^{\tau}min$ は、5~17N/mm²程度あることが確認さ れた。

図-8 T_{min} $t_{T_{min}}$ t_{min} t_{min} t_{min} とコンクリートの穿孔径 の関係

図-9 *" τ_{min"t} τ_{min"min} τ_{min}と*コンクリート圧縮強度の 関係

6. まとめ

非拘束式引張試験から得られた接着系あと施工アンカ ーの引張試験結果 1620 体についてデータを取り纏め,最 大耐力と破壊性状の関係を調べた。また,付着破壊と判 定されたデータ 490 体に対して付着応力度を検証した。 その結果,以下に示す知見が得られた。

- (1) コーン状破壊のエポキシなど一部計算値が高いものも確認されたが、多くのデータの最大耐力は、計算値より高い値にあった。
- (2) 最大耐力と計算値の比を値の大きい順に並べると、 引き抜けを伴うコーン状破壊>コーン状破壊>付 着破壊となった。
- (3) 最大耐力と計算値の比のばらつきを値の小さい順 に並べると、付着破壊<引き抜けを伴うコーン状破 壊<コーン状破壊となった。</p>

- (4) コーン状破壊より引き抜けを伴うコーン状破壊の 方が計算値を下回るデータが少なくばらつきも小 さいことから式(2)の有用性が示唆された。
- (5) 付着応力度の下限値の算出を同一条件 5 体に対し て行った結果,t分布による下限値 t^πminが最小値と なり,試験結果をもとに付着応力度の性能判定を行 う際には,N数が5体の場合,t分布による t^πminで 評価を行うことで最も安全側の結果が得られるこ とが示唆された。
- (6) t_{min} は、5~17N/mm²程度あることが確認された。

謝辞

検討に用いたデータは建材試験センターにて受託試験 として実施したもののうちメーカーよりデータ使用の許 可を頂いた試験結果を使用した。ご協力いただきました メーカーは、日本ヒルティ、ユニカ、峰岸、サンコウテ クノ、岡部、フィッシャージャパンとなります。

協力メーカー様をはじめ,関係者各位の皆様に深く感 謝申し上げます。

参考文献

- 国土交通省:あと施工アンカー・連続繊維補強設計・施工指針,2006.5
- 2) 伊藤嘉則,中野克彦,桝田佳寛,川上 修:非拘束 式の引張試験から得られた接着系あと施工アンカ ーの付着強度検証,あと施工アンカーの耐久性評価 と設計方法の高度化に関するシンポジウム,JCI-C90, pp.167-174,2016
- 3) 伊藤嘉則,守屋嘉晃,上山耕平,ほか:接着系あと施工アンカーの引き抜き耐力に及ぼす各影響因子に関する研究(その1~3),日本建築学会大会学術 講演梗概集 C-2 構造IV, pp.71-76,2002
- 内田佑介,伊藤嘉則,濱崎 仁,大西智哲,高橋宗 臣:接着系アンカーの引き抜き強度に関するばらつ きの検証(その1,その2),日本建築学会大会学術 講演梗概集 C-2 構造IV, pp.247-250, 2015
- 5) 日本建築防災協会:2017年改訂版 既存鉄筋コンク リート造建築物の耐震診断基準・改修設計指針・同 解説,2017
- 6) 松崎育弘,川瀬清孝,永田守正,丹羽亮:樹脂アン カーの支持耐力に関する実験研究,コンクリート工 学年次論文集, Vol.6, pp.393-396, 1984