論文遠心実験用鉄筋コンクリート極小模型の部材性能と再現限界

林 和宏*1・宮地 祐一*2・金田 将吾*2・齊藤 大樹*3

要旨:遠心力載荷実験への適用をめざす,直径数 cm 程度の鉄筋コンクリート極小模型杭の静的載荷実験を実施した。試験体は計 10 体で,杭径,鉄筋の断面形状,主筋本数,帯筋ピッチ,シアスパン比を変数とした。本論で提案した簡略極小杭模型は鉄筋の代わりに鋼の丸棒を,コンクリートの代わりにモルタルを用いる。 実験から,(1) 実大の鉄筋コンクリートが曲げ破壊する際の挙動が簡略杭模型で概ね再現できること,(2) 断面諸量に基づく全塑性モーメントから模型の耐力評価が可能であること,(3) 鋼丸棒とモルタル間の付着力が 十分ではないためエネルギー消費性能は実際の鉄筋コンクリート杭よりも劣ること,を明らかにした。 キーワード:鉄筋コンクリート杭,静的載荷実験,曲げ破壊,全塑性モーメント,等価粘性減衰定数

1. はじめに

遠心力載荷は、土木・建築構造物などの挙動を正確に 把握するための模型実験手法の一つであり、地盤や相互 作用の実験的研究で広く用いられてきた。模型試験体に 加速度λが付与されると、相似則により模型試験体の各 種物理スケールが表-1のように変化する。特に、模型 寸法は実大スケールの1/λ倍となるため、数+Gの加速 度を試験体に付与することで、10mを超える地盤や構造 物の挙動が数+ cmの模型実験から取得できる。

建築基礎構造設計指針1)は、杭部材の損傷を考慮した 二次設計法を構築・導入すべく検討が進められている。 しかし, 杭の損傷挙動が上部構造物の地震応答に与える 影響については、いまだ不明な点が多い²⁾。地盤-杭-建物連成系を対象とし、地中杭部材の損傷を再現した実 験的研究は多くなく、それらは大型振動台を用いた事例 と遠心力載荷装置を用いた事例に大別される。大型振動 台を用いた実験は、国内では文献3),4)など数例しかない。 また、世界最大の振動台実験施設を利用した文献 3)の実 験でも,用いられた杭は直径 20cm 程度に過ぎず,実建 物に適用されるサイズの杭部材が損傷する地震時挙動は 取得できない。遠心力載荷実験では、相似則により極小 断面の模型で実大サイズの杭部材が模擬できる。鋼管杭 の損傷を再現した遠心力載荷実験については、国内だけ でも文献 5),6)をはじめ数十例が報告されている。しかし、 鉄筋コンクリート杭の損傷を再現した遠心実験は、水平 方向静的載荷により乾燥砂地盤中の杭模型を破壊させた 文献 7)や、遠心場振動実験によって杭頭付近の一部鉄筋 を塑性化させた文献 8)など数例に限られる。

著者らは、本論の先行研究^{9,10}において、モルタルと 小径金属棒から構成される直径 2.5cm の極小模型を用い、 コンクリート系杭の損傷を伴う連成系遠心場振動破壊実 験を実施した。実験に用いた杭模型は、大まかな部材性 能(例えば骨格曲線の形状など)において実大の鉄筋コ ンクリート杭の挙動を再現しているが、現行設計式に基 づく算定耐力との比較,耐力劣化領域における損傷性状、 エネルギー消費性能など詳細な検討には踏み込んでいな い。連成系を対象とした杭基礎構造の二次設計法確立に おいては、現状で唯一実大レベルの終局・限界性状を実 験的に検討できる遠心力載荷実験が果たすべき役割が大 きい。しかし、鉄筋コンクリート極小模型の再現性能に 関する検討事例は少なく、少数の実験結果が例示される 程度に留まっている^{11)など}。

本論では,鉄筋の本数等を簡略化した直径数 cm 程度 の鉄筋コンクリート極小模型杭の遠心場静的載荷実験を 実施し,その変形挙動と終局状態を明らかにする。試験 体は,杭径,鉄筋の断面形状,主筋本数,帯筋ピッチ, シアスパン比を変数とする。その上で,実大の鉄筋コン クリート杭断面を忠実に再現したモデルとの比較を通じ, 当該簡略模型を適用した遠心力載荷実験から,実大の連 成系地震時損傷挙動を検討することの妥当性を検証する。

2. 鉄筋コンクリート杭極小模型の遠心場静的載荷実験

2.1 模型試験体概要

実験は京都大学防災研究所の遠心力載荷装置を用いた。

表-1 遠心力載荷実験における相似則

物理量	相似比	物理量	相似比
寸法	1 / λ	応力	1
速度	1	ひずみ	1
動的加速度	λ	曲げ剛性	$1 / \lambda^4$
カ	1 / λ ²		1 / λ
質量	1 / λ ³	周波数	λ
	r		

※相似比(模型/実大)、 λ: 遠心加速度

*1 豊橋技術科学大学 建築・都市システム学系 助教 博士(工学) (正会員) *2 豊橋技術科学大学 建築・都市システム学系 大学院生 *3 豊橋技術科学大学 建築・都市システム学系 教授 博士(工学) (正会員) 図-1 と表-2 に実験で用いた極小杭模型試験体の概要 を示す。試験体は計 10 体で,杭径,鉄筋の断面形状,主 筋本数,帯筋ピッチ,シアスパン比を変数とした。模型 は杭径 D = 16mm, 25mm の 2 種類で,50G 場遠心力載荷 実験に適用した場合,実大スケールはそれぞれ 0.80m と 1.25m となる。建築基礎構造設計例集¹²⁾に記載されてい る径 1.8m の鉄筋コンクリート杭実大断面例は,作用軸

(f) 試験体 No.3,4 (No.5,6 は主筋 6 本, No.7,8 は@5)

図-1 モルタル打設前の鉄筋カゴ(単位:mm)

カ比n = 0.10, 主筋比 $p_g = 1.13\%$, せん断補強筋比 $p_w = 0.26\%$ である。試験体No.1とNo.2は、上記断面例を1/50 倍の縮小断面で可能な限り忠実に再現した。杭径Dは 25mmで、主筋およびせん断補強筋に写真-1に示す縮 尺模型用鉄筋を用いた。当該鉄筋は、SD295相当の降伏 応力および引張強度を保持しており、公称直径0.496mm (実大スケールでは24.8mm,D25相当)の断面に、実 物相当のリブや節が再現されている。ただし、節間隔は 実大スケールで 50mm 前後と実物鉄筋よりも大きいため、 コンクリートとの付着性能は実物鉄筋よりは劣る。写真 -2(a)にモルタル打設前の試験体No.1の鉄筋カゴを示す。

(a) 試験体 No.1

(c) 試験体 No.7

写真-2 モルタル打設前の鉄筋カゴ

表-2 試験体概要

		シア	主筋			せん断補強筋			モルタル	 圧縮軸力			
試験体	杭径	スパ ン比	径	本数	降伏 応力	主筋 比	径	間隔	降伏 応力	補強 筋比	圧縮強度	降伏軸力	作用 軸力比
	D (mm)	a/D	<i>φ_m</i> (mm)		<i>б_{у,m}</i> (MPa)	р _д (%)	ϕ_{s} (mm)	(mm)	<i>σ_{у,s} (MPa)</i>	p _w (%)	F _m (MPa)	N _o (N)	n=N/No
No.1	25	1.5	0.5	28	342	1.10	0.5	6.0	342	0.26	17.1	10,150	0.11
No.2	25	3.0	0.5	28	342	1.10	0.5	6.0	342	0.26	17.1	10,150	0.11
No.3	25	1.9	1.2	4	374	0.92	0.8	15.0	432	0.27	14.8	8,890	0.13
No.4	25	3.4	1.2	4	374	0.92	0.8	15.0	432	0.27	14.8	8,890	0.13
No.5	25	1.9	1.2	6	374	1.38	0.8	15.0	432	0.27	14.1	9,364	0.12
No.6	25	3.4	1.2	6	374	1.38	0.8	15.0	432	0.27	14.8	9,702	0.12
No.7	25	1.5	1.2	4	374	0.92	0.8	5.0	432	0.80	17.1	10,009	0.11
No.8	25	3.0	1.2	4	374	0.92	0.8	5.0	432	0.80	17.1	10,009	0.11
No.9	16	2.1	1.2	4	374	2.25	0.8	8.0	432	0.79	10.5	3,756	0.00
No.10	16	3.0	1.2	4	374	2.25	0.8	8.0	432	0.79	10.5	3,756	0.00

※ 表中は全て模型スケール値

試験体 No.3 と No.4 は, 写真-1 の模型用鉄筋ではな く鋼丸棒を用いた縮小杭模型である。鋼丸棒は 490MPa 級鋼用溶接棒で,4本の主筋は径 1.2mm (TG-S50,降伏 応力 374MPa),15mm ピッチのスパイラル配筋としたせ ん断補強筋は径 0.8mm (YM-45T,降伏応力 432MPa)の ものを用いた(図-1(f)および写真-2(b)参照)。主筋比 *P_g*は 0.92%, せん断補強筋比 *P_w*は 0.27%で,試験体 No.1 および No.2 に近しい。

試験体 No.5 と No.6 は主筋本数を 6 本としたモデルで ある。使用した鋼丸棒およびせん断補強筋のピッチは試 験体 No.3 および No.4 と同じである。試験体 No.7 と No.8 はせん断補強筋のピッチを@5mm(補強筋比 P_w は試験 体 No.3 の 3 倍)としたモデルである (写真-2(c)参照)。 こちらは、主筋本数を試験体 No.3 および No.4 と同じと している。

試験体 No.9 および No.10 は, 杭径 $D \ge 16$ mm とした モデルである。主筋本数は 4 本で, せん断補強筋のピッ チを@8mm (補強筋比 p_w は試験体 No.7 に近しい 0.79%) とした。試験体は, モルタル圧縮強度が 10.5~17.1MPa の範囲にあり,奇数 No.がシアスパン比小($a/D=1.5\sim2.1$), 偶数 No.試験体がシアスパン比大(3.0~3.4) である。

本論の極小杭模型は、コンクリートに代えてモルタル を用いる。モルタルには普通ポルトランドセメントと珪 砂8号を用いた。同砂の粒径は概ね50~150µmの範囲に あり、実大スケールでは2.5~7.5mmの骨材に相当する。

2.2 載荷計測システム

図-2 に、杭模型の静的載荷システムの概要を示す。 杭模型はその下端を反力治具に剛接合、上端はピン治具 と鉛直ローラー治具を介して水平載荷装置と接続する片 持ち梁形式とし、図中破線の位置が危険断面となる。杭 頭の治具は、50G 場で作用軸力比 $n = N/N_o = 0.11 \sim 0.13$ (ここで N は作用軸力 1,127N、 建築基礎構造設計例集 ¹²⁾の断面例では n = 0.10) となるよう重さを調整してい る。ただし、試験体 No.9 と No.10 だけは、1G 場で実験 を実施しており、作用軸力比 n = 0 である。

載荷プロトコルは水平方向正負交番漸増繰り返しと

図-2 杭模型静的載荷システム(試験体 No.1, 単位:mm)

し、各ステップの変形角は 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15rad, 繰り返しは正負 2 サイクルずつと した。なお, 試験体の変位に関しては, 水平載荷位置か ら 30mm 上方にレーザー変位計を設置し, その変位を危 険断面位置までの距離(図-2 では 67.5mm)で除した値 を変形角とした。

3. 鉄筋コンクリート杭模型の耐力評価

鉄筋コンクリート杭模型が曲げ破壊する場合の耐力*Q*_bは、次式から評価する。

$$Q_b = M_u / a \tag{1}$$

ここで, *M*_uは杭模型の全塑性モーメント, *a*はシアスパンである。また,鉄筋コンクリート杭部材がせん断破壊する場合の耐力 *Q*_sについては,建築耐震設計における保有耐力と変形性能¹³)に基づき,次式で評価する。

$$Q_{s} = \left\{ \frac{0.115k_{u}k_{p} \left(180 + F_{m} \right)}{a/D + 0.12} + 2.7\sqrt{p_{w} \cdot \sigma_{y,s}} \right\} 0.78D^{2}$$

 $\cdot \cdot \cdot (2)$

ここで、 k_u は杭模型の有効せいに関する補正係数 0.718 である。 k_p は引張鉄筋比 p_t に関する補正係数で、次式から算定される。

$$k_p = 0.82 p_t^{0.23} \tag{3}$$

4. 実験結果および耐力評価結果との比較

4.1 荷重-変形関係と終局状態

図-3 に各試験体のせん断カー変形角関係を,表-3 に各試験体の最大耐力と耐力評価結果の比較を示す。図 縦軸は水平方向ロードセルの値,横軸はレーザー変位計 に基づく変形角をとる。図中の実線は正負交番漸増載荷

203 武豪仲取入前力と計画相未								
	耐	力評価結果	実験結果					
試験体	曲げ	せん断		最大耐力	実験値/ 評価値			
	Q _b Q _s		Q _s /	Q _{max}	Q _{max} /			
	(N)	(N)	Q_b	(N)	Qb			
No.1	620	815	1.32	663	1.07			
No.2	310	571	1.84	289	0.93			
No.3	479	747	1.56	607	1.27			
No.4	268	579	2.16	316	1.17			
No.5	598	739	1.24	728	1.22			
No.6	337	579	1.72	432	1.28			
No.7	625	1,137	1.82	796	1.27			
No.8	313	883	2.83	357	1.14			
No.9	98	161	1.64	106	1.08			
No.10	69	143	2.06	104	1.49			

表-3 試験体最大耐力と評価結果

試験体の実験結果を,鎖線は曲げ破壊耐力 Qb を,破線 はせん断破壊耐力 Qs を示す。

本論の試験体 10 体は、いずれも曲げ破壊耐力 Q_b がせん断破壊耐力 Q_s を下回っている(表-3 参照)。試験体の最大耐力 Q_{max} は評価値(曲げ破壊耐力 Q_b)の 0.93~ 1.49 倍の範囲にあり、断面諸量に基づく全塑性モーメント M_u から、曲げで決まる鉄筋コンクリート極小模型の耐力は概ね安全側に評価できる。特に、杭径 D が 25mmの試験体 No.1~No.8 では、実験結果 Q_{max} が評価値の 0.93~ 1.28 倍の範囲にあり評価精度がよい。

ただし,耐力劣化挙動や終局破壊状態は,各試験体で 異なる。各試験体の終局状態を写真-3 に示す(試験体 No.10 は被りモルタルの大半が剥離したため不掲載)。実 大鉄筋コンクリート杭を忠実に再現した試験体 No.1 と No.2 (以後,忠実模型)では,危険断面位置に顕著な曲 げひび割れが発生し,載荷終了後の観察で主筋の破断を 確認した。なお両試験体ともに,危険断面直上以外に曲 げひび割れは分布しておらず,斜めひび割れや主筋の座 屈も確認できなかった。図-3(a)と(b)における,変形角

0.04rad 以降の急激な耐力低下は、この主筋の破断に起因 している。これに対し、鋼丸棒で鉄筋カゴを作製した試 験体 No.3~No.10(以後、簡略模型)では、主筋および せん断補強筋に破断は発生しておらず、最大耐力発揮後 の劣化挙動は、モルタルの圧壊や剥離に起因すると考え られる。

写真-1 に示す縮尺模型用鉄筋では、リブや節が再現 されているため、周辺モルタルとの間に一定の付着力が 期待できる。そのため、忠実模型では危険断面位置の縮 尺模型用鉄筋に塑性ひずみが集中し、最終的に破断した。 一方、簡略模型に用いた鋼丸棒には当然リブや節がなく、 多数の鉄筋を数本の主筋に置換(試験体 No.1 の主筋は 28 本、試験体 No.3 は 4 本)したことで、鉄筋総断面積 に対する単位付着面積の比も低下している。そのため、 簡略模型の主筋は付着力が足りず、危険断面位置周辺で 平面保持を維持しきれなくなり、塑性ひずみが軸方向に 分散したことで破断には至らなかったと推察される。結 果として、簡略模型は最大耐力発揮後の劣化挙動が試験 体 No.1 や No.2 と選べて緩やかになった。

なお, 簡略模型試験体では, 主として危険断面位置周 辺に曲げひび割れやモルタル圧壊が多く見られるが、写 真-3(e)の試験体 No.5 だけは,明瞭なせん断ひび割れが 確認できる。この試験体 No.5 は、曲げ破壊耐力 Obに対 するせん断破壊耐力 Osの比が 1.24 と、他の試験体に比 べて小さい。更に、試験体の最大耐力 Qmax がせん断破壊 耐力 Os の 98.5%に達していることから、試験体 No.5 は 曲げ破壊によって耐力が頭打ちになった後、せん断破壊 にモードが移行し終局状態に至ったと考えられる。本論 の極小杭模型は、コンクリートに代えてモルタルを用い ている。コンクリート系部材のせん断破壊に対しては, 骨材の噛み合い効果などが影響を及ぼしており、粗骨材 のないモルタルはコンクリートに比べせん断耐力が低下 する。しかし、本論の極小杭模型ではその影響は顕著で はなく,現行の評価式相当のせん断耐力を発揮したとい える。ただし、本論では、鉄筋コンクリート杭模型の最 大耐力が曲げで決まる断面諸量と載荷条件を採用してお り、せん断破壊に対する耐力やばらつきに関する検討は +分ではない。それでも、最大耐力 Qmax がせん断破壊耐 カ Q_sを大幅に下回った試験体では,顕著なせん断ひび割 れが見られなかった。上記の試験体 No.5 に関する考察を 併せれば,本論が扱う鉄筋コンクリート極小模型杭のせ ん断耐力評価において,実大の鉄筋コンクリート柱の設 計式に基づく手法¹³⁾(式(2))が一つの指標になると考え られる。今後は,試験体数を増やすとともに,簡略模型 試験体に丸鋼棒を用いることに関する影響¹⁴⁾等を考察 する必要がある。

4.2 エネルギー消費性能

図-4 に忠実模型試験体と簡略模型試験体の骨格曲線 を示す。忠実模型は試験体 No.1 と No.2, 簡略模型は試 験体 No.3, No.4, No.7, No.8 である。図は各載荷サイク ル正側最大変形時を結んだものである。全ての試験体で, 最大耐力発揮後に劣化挙動が見られる。

図-5 は、忠実模型試験体と簡略模型試験体の等価粘 性減衰定数 h_{eq} の推移を示す。図は縦軸に h_{eq} の値を、横 軸に変形角をとる。図中の●は、試験体の耐力が曲げ破 壊耐力 Q_b を超えた載荷サイクルを示している(以後、 基準変形角)。ただし、試験体 No.2 は最大耐力 Q_{max} が曲 げ破壊耐力 Q_b に達していないため、最大耐力 Q_{max} を発 揮した載荷サイクルを基準変形角としている。忠実模型 では、基準変形角の載荷サイクルにおける等価粘性減衰 定数 h_{eq} が 0.15~0.2 の範囲にある。また、基準変形角の 2 倍の載荷サイクルでは h_{eq} が 0.25 を超え、模型が高い エネルギー消費性能を発揮できることを示している。

簡略模型では、基準変形角での heq が 0.1~0.15 の範囲 にあり、忠実模型に比べやや値が小さい。また、より大 きな変形角の載荷サイクルでも heq はそれほど上昇せず、 値が 0.25 を超えたのは基準変形角の約4倍の変形を与え た際であった。前節に記したように、簡略模型に用いた 鋼丸棒は付着力が十分ではないため、塑性ひずみが軸方 向に分散していると考えられる。ひずみが軸方向に分散 すると、分散範囲において弾性ひずみ分のエネルギーが 消費されなくなり、相対的に heq が低下したと考えられ る。

以上,本論の実験結果をまとめれば,簡略杭模型は実 大鉄筋コンクリート杭を忠実に再現した極小杭模型と同 じく,断面諸量に基づく全塑性モーメント *Mu* から曲げ

破壊時の耐力を評価できる。最大耐力発揮後の挙動につ いては、劣化傾向を再現できているものの、原因となる 破壊現象が忠実模型と異なるため、その進展は緩やかに なった。また、簡略杭模型のエネルギー消費性能は、忠 実模型に比べ低くなる傾向にある。従って、鋼丸棒で鉄 筋カゴを作製した極小杭模型を適用した遠心力載荷実験 は、実大相当の地盤-杭-建物連成系を対象とする最大 水平耐力(極限応答)に関する検討に用いることは可能 であると考えられる。しかし、杭の損傷が相当進展した 強非線形領域の地震時挙動について、最大値だけでなく 振幅等の履歴を検証することは難しい。

5. まとめ

遠心力載荷実験への適用をめざす,直径数 cm 程度の 鉄筋コンクリート極小模型杭の静的載荷実験を実施し, 以下を明らかにした。

- (1) 鋼丸棒で鉄筋カゴを作製した簡略極小杭模型を提案 した。実大の鉄筋コンクリート杭の数十本の主筋を, 当該簡略杭模型では数本の鋼丸棒に置換している。
- (2) 簡略杭模型は、実大の鉄筋コンクリート杭を忠実に 再現した極小模型と同じく、断面諸量に基づく全塑 性モーメントMuから曲げ破壊時の耐力が評価できる。 ただし、最大耐力発揮後の劣化挙動については、傾 向は再現できるものの、原因となる破壊現象が忠実 模型とは異なる。
- (3) 簡略杭模型のエネルギー消費性能は、忠実模型に比べ低くなる傾向にある。これは、鋼丸棒とモルタル間の付着力が十分ではないことによる。従って、簡略杭模型を用いた連成系遠心力載荷実験では、系の最大水平耐力(極限応答)に関する検討は可能であるが、強非線形領域の地震時挙動(最大値だけでなく振幅等の履歴)を検証することは難しい。
- (4) 鉄筋コンクリート杭模型のせん断耐力について、柱部材の設計式を援用した評価を試みた。曲げとせん断の耐力比が大きな試験体では、顕著なせん断ひび割れが見られず、最大耐力は曲げ破壊で決まっていた。一方、耐力比が1.24と最も小さい試験体では、顕著なせん断ひび割れが見られた。当該試験体の最大耐力は、せん断耐力評価値の98.5%であった。極小杭模型のせん断破壊については、今後更なる検討が必要である。

謝辞

本研究の推進に関しては、大林財団から助成をいただ きました。また、試験体に用いた模型用鉄筋の材料特性 情報および拡大写真は、(有)豊金吾製作所 鈴木淑夫氏、 および法政大学 溝渕利明教授にご提供いただきました。 ここに謝意を表します。

参考文献

- 1) 日本建築学会:建築基礎構造設計指針, 2008.09.
- 2) 日本建築学会:大会(中国)構造部門(基礎構造) パネルディスカッション資料 大地震時の杭基礎 の耐震設計,2008.09.
- 佐藤正義,田端憲太郎,時松孝次:地盤と基礎の地 震防災のための E-ディフェンスによる震動台実験, 土と基礎, No.55, pp.29-32, 2007.05.
- 田村修次,肥田剛典:大型せん断土槽を用いた液状 化実験における RC 杭の破壊が構造物挙動に及ぼす 影響,日本建築学会構造系論文集,No.635, pp.91-96, 2009.01.
- 5) 秀川貴彦, 岸本美季, 柏尚稔, 宮本裕司, 田村修次: 杭-地盤系の非線形性を考慮した杭基礎建物の地 震応答性状, 日本建築学会構造系論文集, No.661, pp.491-498, 2011.03.
- 木村祥裕,岸野泰典,田村修次:遠心載荷装置を用いた上屋・杭基礎-液状化地盤系における中空円形断面杭の動座屈実験,日本建築学会構造系論文集, No.717, pp.1707-1716, 2015.11.
- M. Kimura, T. Adachi, T. Yamanaka, Y. Fukubayashi : Failure mechanism of axially-loaded concrete piles under cyclic lateral loading, Centrifuge 98, Kimura, Kusakabe & Takemura (eds) 1998 Balkema, Rotterdam
- 樋口俊一,堤内隆広,大塚林菜,伊藤浩二,江尻譲嗣: RC造杭基礎構造物の遠心模型振動台実験,土木学会 論文集 A1, Vol.68, No.717, pp. 642-651, 2012.07.
- 9) 林和宏,田村修次:遠心載荷実験におけるコンクリート系杭の損傷挙動と建物の地震応答,日本建築学会構造系論文集,No.740, pp.1633-1640, 2017.10.
- 10) 金田将吾,林和宏,田村修次,齊藤大樹:乾燥砂地 盤における大径 RC 杭の遠心場振動破壊実験,コン クリート工学年次論文報告集,Vol.40,2018.07.
- Knappett J. A, Reid C. Kinmond S, O' Reilly K. : Small-Scale Modeling of Reinforced Concrete Structural Elements for Use in a Geotechnical Centrifuge, ASCE - J. Str. Eng., Vol.137, 2011.11.
- 12) 日本建築学会:建築基礎構造設計例集, 2004.02.
- 日本建築学会:建築耐震設計における保有耐力と変 形性能(1990),1990.10.
- 14) 池田尚治, 宇治公隆:鉄筋コンクリートはりのせん 断耐荷挙動に及ぼす鉄筋の付着の影響に関する研 究, 土木学会論文報告集, No.293, pp.101-109, 1980.