論文 非梁貫通型柱 RC 梁 S 接合部のせん断性状に関する解析的研究

田口 千貴*1・丸田 誠*2・池沼 良章*3・市川 大真*4

要旨:柱 RC 梁 S 構造で鉄骨梁が接合部内を通る梁貫通型に対して,鉄骨梁が接合部内を通らずダイヤフラ ム等で応力伝達する非梁貫通型についての研究は少ない。かつ,最上階の T 形や L 形部分の接合部のせん断 強度に対する知見は少ない。本研究では,まず既往の非貫通型の接合部破壊型実験のシミュレーションを FEM 解析で確認し解析の有効性を確認した。その上で,T 形,L 形の接合部せん断強度を解析的に検討した。その 結果,T 形は既往の CFT 指針式でせん断強度を良好に評価したが,L 形では解析より得られた最大耐力を過 大評価する傾向が確認された。

キーワード:柱 RC 梁 S 構造,非梁貫通型,接合部せん断強度, FEM 解析

1. はじめに

近年,柱が鉄筋コンクリート(RC)造,梁が鉄骨(S) 造の複合構造が普及してきた。既往の研究では,鉄骨梁 が接合部内を通る梁貫通型と,梁が貫通しないでダイヤ フラム等で応力を伝達する非梁貫通型に大別され¹⁾,非 梁貫通型でふさぎ板を用いる本研究の柱梁接合部(以下, 接合部)は角型の鋼管にコンクリートを充填し上柱と下 柱が一体となっている。これは、コンクリート充填鋼管 (以下,CFT)構造の構造に近く,梁貫通型と比べると未 だ知見が少ない。

既往の研究では,接合部せん断耐力の算定には鉄骨鉄 筋コンクリート(以下,SRC)構造計算規準¹⁾よりもCFT 指針²⁾がより良い対応を示すことが確認された³⁾。CFT 指針の接合部せん断耐力算定式はSRC規準と異なり,T 形,L形などの接合部形状による低減係数は記述されて いない。そこで本研究では,実験では確認が難しいT形, L形の接合部せん断耐力に対して,FEM 解析で確認する ことを目的とする。

まず, FEM 解析の有効性を検証するため,実験で確認 されている接合部せん断破壊先行型(以下,Jモード)+ 字形試験体と,柱曲げ降伏型(以下,Cモード)のT形 試験体に対してFEM 解析を行う。続いて,T形およびL 形に対して,実験が行われた試験体に基づいて形状を決 定し,解析結果における最大耐力とCFT指針式による接 合部せん断耐力の対応性を検討する。

2. 有効性確認解析概要

2.1 解析対象試験体

解析対象とした試験体は,丸田ら³⁾が行った実験の接 合部せん断破壊型の十字形である HJ01~HJ04 と追加で 実験を行った T 字形の柱曲げ降伏先行型の HJ11(図-1)

*1 日本大学 理工学部建築学科 (正会員)

- *2 静岡理工科大学 理工学部建築学科 教授 工博 (正会員)
- *3 東京鉄鋼株式会社 開発部 (正会員)
- *4 日本大学大学院 理工学研究科 建築学専攻(学生会員)

図-1 T形の試験体概要

表-1 T 形試験体の材料諸元(コンクリート)

試験体	弾性係数	圧縮強度	ポアソン比	
	kN/mm ²	N/mm ²		
HJ11	27.8	33.8	0.170	

表-2 T 形試験体の材料諸元(鋼材)

4四++1毛	鋼種	寸法,径	降伏応力	対象 試験体
到刊1271年			(N/mm ²)	
鋼管	BCR295	PL9	322	
鉄骨梁 (フランジ)	SN490	PL12	368	
鉄骨梁 (ウェブ)	SN490	PL9	404	HJ11
ダイヤフラム	SN490	PL22	365	
柱主筋	SD490	D22	539	
帯筋	SD295	D6	448	

の1体の計5体である。HJ11のコンクリートの材料諸元 を表-1,鋼材の材料諸元を表-2に示す。十字形,T形 とも地震時の逆対称モーメントが梁に作用するように載 荷している。またT字形の柱主筋は,上部で機械式定着 金物により固定した。

2.2 試験体のモデル化

図-2 に試験体の要素分割図を示す。解析モデルは, 試験体の対称性を考慮して奥行方向を半分にした 1/2 モ デルとしている。そのため,境界面においては Y 方向の 水平変位および X, Z 方向の回転を拘束した。

コンクリートは六面体要素,主筋はトラス要素,鉄骨 梁,鋼管およびダイヤフラムは四辺形シェル要素でモデ ル化し,帯筋は埋込鉄筋とした。主筋-コンクリート間 および鋼管-コンクリート間の付着すべりは,接合要素 を挿入することにより考慮しており,ダイヤフラムの上 下にも接合要素を挿入することで,ダイヤフラム-コン クリート間の離間を表現している(図-2参照)。

2.3 材料構成モデル

コンクリートは、等価一軸ひずみに基づく直交異方性 モデル 4で表現する。主応力~等価一軸ひずみ関係は圧 縮側では応力上昇域で修正 Ahmad モデル⁵⁾, 軟化域で要 素寸法依存性を考慮した Nakamura-Higai モデルのを採用 した。引張側ではひび割れが発生するまで線形弾性とし, 引張軟化域特性を土木学会コンクリート標準示方書の式 ⁷⁾により,破壊エネルギーは 0.147N/mm とした(参考文 献(7)を参照)。繰り返し応力下の履歴特性は曲線で表現 するモデルとする⁸⁾。またコンクリートのひび割れは, 非直交分散ひび割れモデル ⁹で表現し,ひび割れ方向の せん断伝達特性は非線形解析モデル¹⁰⁾とする。鋼材に関 する応力--ひずみ関係は Ciampi らの修正 Menegotto-Pinto¹¹⁾モデルで表現し、包絡線は bi-linear を仮定した。 なお,降伏後の2次勾配は初期剛性の1/100とした(図 -3 (b))。鋼管-コンクリート間,およびダイヤフラム とコンクリート間の付着特性は、松浦ら¹²⁾によるコンク リートに埋め込まれた鉄骨の引き抜き及び押し抜き試験 の結果を参考に仮定した(図-3(c))。さらに、主筋-コンクリート間には、参考文献(13)に示される付着応力 - すべり関係を適用した。

3. 解析結果

3.1 荷重変形関係

図-4 に柱せん断力—層間変形角の関係を示す。黒線 は実験結果,赤線は解析結果である。また,解析と実験 の最大荷重の比較を図-4(f)に示す。解析結果は,十 字型でJモードの破壊形式であるHJ01~HJ04試験体で最 大耐力が実験結果と概ね対応した。また,T形でCモー ドのHJ11の解析結果も概ね実験結果と対応を示してい

た。また,最大耐力の実験値/解析値は最大で1.11,最 小で0.97であり,平均は1.04であった。

続いて、履歴形状は、HJ01~03、11の試験体が実験に おいて主にスリップ形状を示していたが、解析結果は僅 かなスリップ形状しか確認できず、大きなエネルギー吸 収性能が確認された。これは、解析における柱主筋の付 着力が実験の付着力より過大であったこと、ダイヤフラ ムおよびコンクリート柱の界面における離間の付着モデ ルが実験とは十分対応できていない点が原因として考え られる。一方、HJ04では R=50×10⁻³ radの大変形時のス リップ形状は実験よりも解析の方が顕著であった。これ は、HJ04 は Fc60 とコンクリート強度が高いため、付着 力が Fc30 の HJ01~03 より高いことにより履歴ループに 影響を与えたと考えられる。そのため、解析での付着に 関するモデル化は今後の課題である。

図-4 柱せん断力--層間変形角関係

3.2 降伏状況

図-5に、HJ01~04で計測した3軸方向に貼り付けた 鋼管のひずみゲージ位置および HJ11 で計測した柱主筋 におけるひずみゲージの位置を示す。

図-6は HJ02 の鋼管における降伏状況を示しており, 左側に実験結果,右側に解析結果を示す。HJ02は,実験 では鋼管の中央に位置する最大主ひずみが R=5×10⁻³rad のサイクル時に降伏ひずみに達しており,R=20×10⁻³rad のサイクル時にはほとんどの位置でのひずみが降伏ひ ずみに達していた。解析結果から,実験では未計測の鋼 管中央位置の上下で R=10×10⁻³rad で降伏しており, R=20×10⁻³rad のサイクル時には鋼管全体で降伏が発生し ていた。初期の降伏状況にやや違いはあるが,全体とし て解析は概ね実験と一致していた。

図-6 鋼管の降伏状況 (HJ02)

図-7はHJ04の鋼管における降伏状況を示し,左側は 実験結果,右側は解析結果である。HJ04 は実験では R=5×10⁻³rad で鋼管の中央にある EJ3 が降伏ひずみに達 しており,R=10×10⁻³rad に EJ7 も降伏ひずみに達し, R=20×10⁻³rad で鋼管全体がほぼ降伏ひずみに達する結果 となった。解析では,R=10×10⁻³rad 時に鋼管の降伏が始 まり,中央付近全体に広がっていた。R=20×10⁻³rad 時に は鋼管全体に降伏が発生しており,概ね実験と同じ結果 となった。

図-8 は HJ04 の主筋における降伏状況を示し, 左側は 実験結果, 右側は解析結果である。HJ11 の実験では主筋 の降伏が $R=10\times10^{-3}$ rad まで降伏ひずみに達しておらず, $R=20\times10^{-3}$ rad で EC2, EC3 が降伏ひずみに達していた。 解析の結果は実験同様, $R=10\times10^{-3}$ rad では主筋降伏が確 認できなかった。 $R=20\times10^{-3}$ rad で鋼管の左下にある主筋 が降伏していることが確認できた。これは実験と同様な 結果であり, HJ11 は良好にシミュレーションできた。

実験と解析の鋼材ひずみに関しても,若干降伏位置が 異なる試験体もあったが,解析結果は実験結果と概ね一 致しており十分シミュレーションできていた。

4. 「形およびL形接合部せん断強度の検討

接合部せん断破壊型のT形およびL形の実験は,接合 部へ大きなせん断力を入力することが通常の形状の柱・ 梁部材では難しいため,今回 FEM 解析で確認すること とした。現行の RC 規準, SRC 規準では,T形,L形の 接合部せん断設計式は十字形に対し低減係数を設定し ている.実験で確認されていないT形及びL形接合部の 最大せん断耐力を FEM 解析で確認し,CFT 指針の接合 部せん断耐力式との対応について検討を行う。

4.1 T形骨組

(1) 解析概要

解析モデルおよび材料構成則は 2.2 節および 2.3 節に よる。今回設定した材料諸元を表-3 に示す。Jモードの 破壊形式とするために, RC 柱の柱曲げ降伏が先行しな いよう,便宜的に柱を弾性体とした。

(2) 解析結果

柱せん断力-層間変形角関係の解析結果を図-9 に示 す。R=+20×10⁻³rad 時に最大荷重 983.2kN に達し, 接合部 耐力 (CFT 指針式) の 903.0kN と概ね対応していた。図 -10に解析による各種イベントとして, R=+10×10⁻³rad 時 に発生した接合部内のコアコンクリート圧壊時のひび 割れ状況 (図-10 (a)), R=+10×10⁻³rad 時におけるコア コンクリート圧壊時のコンクリートの圧縮側主応力分 布を (図-10 (b)), また, R=+20×10⁻³rad 時に発生した 接合部の鋼管における降伏状況を図-10 (c) に示してい る。RC 柱は弾性体としているため, 柱の損傷は見られな

図-8 柱主筋の降伏状況(HJ11)

表-3 T形の材料諸元

 軸力比η		_
S梁	寸法	$\begin{array}{c} 400 \times 200 \times \\ 12 \times 16 \end{array}$
	鋼種	HT780
RC柱	寸法 cb×cD	400×400
	F _C (N/mm ²)	弹性体
	主筋	7-D25 SD980
	補強筋	4-D6 SD785@40
	pw (%)	0.79%
RCS 接合部	$\sigma_{\rm B}~({ m N/mm^2})$	32.1
	鋼管(厚さ,鋼種)	PL6 SS400
	ダイヤフラム(厚さ, 鋼種)	PL19 HT780
幅圧比 (cb/t)		67

図-9 荷重Q-層間変形角R関係(T形)

い一方で, 接合部内のコアコンクリートには損傷が顕著 に確認された。またコンクリートの圧縮側主応力分布は, 右下で大きな圧縮応力を示しており, そこから圧壊部分 まで圧縮ストラットを形成しているのが確認できた。 R=20×10⁻³rad 時の鋼材における降伏状況をみてみると上 部のダイヤフラム下で鋼管が降伏しており, 梁部分は降 伏していないことが確認できた。その後も, 鉄骨梁の降 伏は確認されなかった。これより, T 形モデルは推定通 りのJモードの破壊形式となった。

したがって, T 形形状における接合部耐力は, 十字形 形状と同等になることが確認でき, CFT 指針式で低減係 数を設定せず評価可能であることが分かった。

4.2 L形骨組

(1) 解析概要

L形のモデルを図-11に示す。L形のモデルはHJ07³⁾のト形試験体を参考に作成した。RC柱の下端をピン支持し、梁端部の全節点に強制変位として鉛直載荷を正負交番で行った。L形では、正方向をLが閉じる方向とし、負方向をLが開く方向とした。方向により接合部に作用する応力は異なる載荷方法となる。JモードとなるようL形もT形同様、RC柱を便宜的に弾性体とし柱曲げ降伏が先行しないようにした。材料諸元は表-4に示す。

(2) 解析結果

柱せん断力—層間変形角関係を図-12 に示す。解析結 果の正側の最大荷重は 798.0kN で,接合部の CFT 指針に よる終局耐力計算値は 907.5kN であり,CFT 指針計算値 より小さい値となった。L 形では正側と負側で接合部に 作用する応力が大きく異なり,基本の十字形とも応力状 態が異なることに起因する。概ね CFT 指針計算値に 0.88 を乗ずると同等な値となる。

解析の各種イベントとして, R=+20×10⁻³rad のサイクル 時における接合部内のコアコンクリートの破壊状況を 図-13 (a), R=+20×10⁻³rad のサイクル時におけるコンク

図-11 L 形試験体の解析モデル概要

軸力比η		_
S梁	寸法	$\begin{array}{c} 400 \times 200 \times \\ 12 \times 16 \end{array}$
	鋼種	HT590
RC柱	寸法 cb×cD	400×400
	F _C (N/mm ²)	弾性体
	主筋	7-D25 SD980
	補強筋	4-D6 SD785@40
	pw (%)	0.79%
RCS 接合部	$\sigma_{\rm B}~(N/mm^2)$	32.3
	鋼管(厚さ,鋼種)	PL6 SS400
	ダイヤフラム(厚さ, 鋼種)	PL19 HT590
幅圧比(cb/t)		67

図-12 荷重Q-層間変形角R関係(L形)

リートの最小主応力分布を図-13 (b) に示し,鉄材の降 伏状況は R=10×10⁻³rad のサイクル時に接合部の鋼管で降 伏が発生し (図-13 (c)), R=+20×10⁻³rad で鉄骨梁の端 部で降伏した (図-13 (d))。解析から,接合部鋼管の降 伏及びコアコンクリートの圧壊が顕著に確認された。コ ンクリートの圧縮主応力分布をみると,梁端部の下で最 大を示しており,圧壊部まで斜めに圧縮ストラットが形 成されている。梁端部の降伏は局所的なものであり,そ の後進展することはなく,接合部の破壊が先行し,損傷 が顕著であったことからL形骨組の破壊形式はJモード だと推察される。

今回の L 形骨組の解析結果からは CFT 指針式による 接合部せん断耐力は,解析より得られた最大耐力を過大 評価する傾向があった。しかし,梁せいや柱せいが異な る場合や材料強度が異なる場合で,この低減係数が異な ることが想定される。この点は今後の課題としたい。

5. まとめ

非貫通型柱 RC 梁 S 構造の接合部せん断性状に関して FEM 解析を行い,以下の知見を得た。

- (1) 十字形, T 形骨組の解析結果は鋼材の降伏位置は若 干異なってはいたが,荷重変形,鋼材ひずみとも実 験結果を良好にシミュレーションできた。
- (2) 解析結果における最大耐力は、T形試験体において、 十字形と同様に CFT 指針式により良好に評価できた。一方、L形試験体は CFT 指針による算定式とは 対応せず、解析結果より得られた最大耐力を過大評 価する傾向が確認された。

今後,柱/梁せい比や材料強度が異なる場合の検討を 行い,RCS 接合部耐力を明確にしていく必要がある。

参考文献

- 日本建築築学会:鉄骨鉄筋コンクリート構造計算規 準,2014
- 日本建築学会:コンクリート充填鋼管構造設計施工 指針,2008.10
- 丸田誠,他:さや管型柱 RC 梁 S 骨組の構造性状(その1)~(その5),日本建築学会大会学術講演梗概集,構造III, pp.1471-1480, 2018.9
- Darwin, D. and Pecknold, D.A. :Nonlinear Biaxial Stress
 Strain Law for Concrete, Journal of the Engineering Mechanics Division, ASCE, Vol.103, No.EM2, pp.229-241, April 1977.
- 5) 長沼一洋:三軸圧縮下のコンクリートの応力~ひず み関係,日本建築学会構造系論文集,第 474 号, pp.163-170,1995.8
- Nakamura. H, Higai. T: Compressive Fracture Energy and Fracture Zone Length of Concrete, Seminar on Post-peak Behavior of RC Structures Subjected to Seismic Load, JCI-C51E, Vol.2, pp.259-272, 1999.10.

図-13 解析結果の損傷状態および応力図(L形)

- 7) 土木学会、コンクリート標準示方書「構造性能照査 編」、2002
- 8) 長沼一洋,大久保雅章:繰返し応力下における鉄筋 コンクリート板の解析モデル,日本建築学会構造系 論文集,第536号,pp.135-142,2000.10
- 9) 長沼一洋,栗本 修,江戸宏彰:FEMによる鉄筋コンクリート壁体の正負繰返し及び動的解析,日本建築学会構造系論文集,第544号,pp.125-132,2001.6
- 10) 長沼一洋:平面応力場における鉄筋コンクリート板の非線形解析モデル,建築学会構造系論文報告集, 第 421 号,pp.39-48, 1991.3
- Ciampi, V., et al. :Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized Excitations, Report No.UCB/EERC-82/23, Univ. of California, Berkley, Nov., 1982
- 12) 松浦睦ほか:鋼板とコンクリートの付着性状に関する基礎的検討,日本建築学会大会学術講演梗概集,構造Ⅲ,pp.1037-1038,2005.9
- 13) Naganuma,K., et al. : Simulation of Nonlinear Dynamic Response of Reinforced Concrete Scaled Model Using Three-Dimensional Finite Element Method, 13th World Conference on Earthquake Engineering, Paper No.586, August, 2004